
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 1

IoT Devices Operating Systems Unveiled: An

Analysis and Comparison of Operating System for

Internet of Things

Maleeha Kanwal1, Maryam Wajeeha2, Nageen Khan3

1,2,3Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan
1maleehakanwal582@gmail.com, 2maryamwajeeha05@gmail.com, 3knageen61@gmail.com

Abstract– The Internet of Things (IoT) is described by

heterogeneous devices. For research objectives, the Internet of

Things (IoT) presents many difficulties. IoT devices operating

system are beneficial for this purpose. The low-end IoT devices

are not reliable for outdated operating systems. A lot of effort is

required to design operating systems for concerned devices. This

paper compares operating systems for low-end IoT devices and

examines essential characteristics in the majority of current IoT

operating systems based on different resource management

attributes. The comparison will focus on operating systems that

are best for low-end devices on behalf of Architecture,

Programming model, Scalability, Network performance, Energy

Consumption and Scheduling. Operating systems that we will

discuss in this paper are Contiki, TinyOS, LiteOS and freeRTOS,

Zephyr, Tizen, UbuntuCore, OpenWSN etc. This paper can be

beneficial for researchers interested in this field. It can provide an

overview of the available IoT operating systems, their features,

advantages, and limitations, as well as this paper can also help

researchers identify gaps in the existing literature.

Keywords– Low Ended Devices, Operating System, Tizen IoT,

Zephyr and Comparison

I. INTRODUCTION

HE Internet of Things is a network of smart devices that

communicate and share information with one another via

the internet. Implanted software, cameras, sensors, and

actuators that can sense light, solids, separation, and

development can all be found in the IoT environment [5]. With

the development advancements we are quickly moving towards

innovative time, where we discover the keen planet, brilliant

urban areas, and shrewd homes all are outfitted with canny IoT

devices fit for performing numerous assignments without

anyone else. IoT devices are divided into two categories [12].

1- high ended devices

2- low ended devices

High ended devices such as smartphones while low ended

devices such as regular operating system like Linux BSD

(Berkeley Software Distribution).

In general, energy and RAM resources are limited in IoT

devices. They are typically small and battery-operated, with a

memory requirement of 100 kilobytes. These devices typically

have 8-piece microcontrollers, which are no longer supported

by modern Windows/Unix/Mac-based workstations and PCs.

These unmistakable IoT features and requirements require a

capable, adaptable, practical, and lightweight framework with

minimal RAM and ROM impressions. For example, Linux,

Windows 8.1, ARM, Arrayant, and IFTTT. The competition to

structure IoT OS is furious [6].

These clever devices that truly interact with the physical

world, such as by controlling motors or detecting the

temperature, form one end of the Internet of Things (IoT).

Amazing servers that serve as the backend, for example by

providing a web interface for administration or a database to

hold sensor data make the opposite end. However, the internet

of things also poses a number of brand-new challenges for the

network protocols and programming styles needed to operate

on and among these smart devices [7].

IoT devices depend on the remote sensors, it's applications,

which makes customary working framework unimportant due

to IoT's low assets and calculation power, in such circumstance

improvement of the lightweight working framework was

important to fulfill asset limitation need of web of things

(IoT).There are different OS for IOT environments are Contiki,

RIOT, LiteOS,TinyOS, freeRTOS, and Mbed [7].

In this paper, we will study about different operating systems

(Contiki, TinyOS, LiteOS and freeRTOS) for IoT on bases of

their architecture, programming model and hardware support,

etc. Fig. 1 describe the different types of IoT operating systems.

The organization of this paper is as follows. Section I

describe introduction; section II is all about literature review.

Section III is about comparison of IoT OS Section IV describe

conclusion.

II. LITERATURE REVIEW

The operating system is an interconnection between the

hardware and the user. The operating system provides us

programming interfaces and manages all the timing of

processes. IoT devices work in asset obliged conditions, and to

deal with these simultaneous applications, a reasonable

execution model must be given by OS. The execution model

must give memory productivity to undertakings.

T

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 2

Fig. 1. Internet of things operating system Categories

Padmini Gaur, Mohit P. Tahiliani describe that the paper

would assist specialists with understanding the Internet of

Things, their character-qualities, and the methodologies

received by OSes to deal with the shrewd constant IoT

frameworks. Further, we have introduced a nonexclusive

model for IoT working framework which may permit one to

pick the best OS as indicated by their necessities [1].

Challouf Sabri, Kriaa Lobna, Saidane Leila Azzouz primary

contribution is a comparison of the most current operating

systems for low-end IoT devices. The comparison will

concentrate on the main elements of the operating system,

including architecture, scheduling, real-time capabilities,

programming model, memory footprint, energy efficiency,

hardware support, and programming model [2].

Muhammad Asim, Waseem Iqbal discuss discuss internet of

things operating systems, current security issues in IoT, as well

as potential solutions to these issues using RPL and 6LoWPAN

(IPv6 over low-power WPAN) protocols [3].

Emmanuel Baccelli, Cenk Gundo gan, Oliver Hahm

explained the initial thorough analysis of RIOT. The kernel,

hardware abstraction, and software modularity are the three

main topics of discussion for aspiring developers and users, and

they are covered both theoretically and practically for a variety

of example configurations. They explain operational features

like network usage, battery management, timers, and system

boot-up. The relevant APIs exposed by the operating system

are discussed in the final section, along with RIOT's broader

ecosystem, including its development and open-source

community [4].

Arslan Musaddiq, Yousaf Bin Zikria, Oliver Hahm surveyed

resource management of different IoT OS. They made an effort

to show hidden patterns/features of several recommended

approaches regarding the IoT OS Resource Management

research. Give an in-depth insight into every Resource

Management view of Contiki, FreeRTOS and TinyOS and their

first approach, underlying idea, advantages, and limitations [7].

Farhana Javed examined the fundamental conditions for

Internet of Things apps, including a suitable architecture,

suggested algorithms, language support, and power and

memory management. They claimed that among the IoT OS

that have already been suggested, some use the most recent

networking technologies and are real-time, while others do not.

According to their investigation they found that Contiki and

RIOT meet almost all of the criteria for an IoT OS, making

them the most popular OS for IoT applications.OS should

possess real-time capabilities and integrate 6loWPAN

protocols for communication [11].

III. IOT OS COMPARISON

In this paper, the most used low ended devices are discussed.

These Operating systems are Contiki, TinyOS, and freeRTOS.

In this session, we will compare these OS on behalf of the

programming model, architecture, and scheduling.

First, we will describe these operating systems for your

understanding.

• FreeRTOS

FreeRTOS is a class of RTOS (real-time operating system)

that is intended to be sufficiently little to run on a

microcontroller in spite of the fact that its utilization isn't

constrained to microcontroller applications. Real-time

Operating System, or an RTOS, is a product segment that

switches between tasks rapidly to give the impression that

several projects are being carried out concurrently on a single

processing center [8].

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 3

• TinyOS

TinyOS is an Open source developed by TinyOS Alliance

for wireless sensor networks written in under the BSD license.

SDK for TinyOS is a combination of Tiny DT and Eclipse

Editor Plugin. TinyOS supports Multi-Path Routing,

Geographical Routing, Routing Reliability-based, Broadcast

based Routing and TDMA (time division multiplexing access)

base Routing. Tiny Sec made TinyOS architecture Secure[9].

• Zephyr

 Zephyr is a real-time operating system, was created for IoT

devices with limited resources. It is highly modular and

adaptable to various devices' unique requirements.

In general, the creation of specialized operating systems for

IoT gadgets is a crucial development in the advancement of this

technology. IoT devices can function more effectively and

efficiently thanks to these operating systems' highly effective

and scalable design. We can anticipate more invention and

advancement in this field as the number of IoT devices

increases [28].

• Contiki OS

Adam Dunkels founded Contiki in 2002. Contiki is an open-

source operating system for memory-required frameworks and

networking access, with a focus on low-power remote Internet

of Things devices. Contiki is still being used for alerts,

radiation monitoring, sound observing for bright cities, and

road illumination frameworks. It is open-source code released

under a BSD licence [9].

ContikiMAC is the name of the standard method for

accomplishing the radio's low-power activity. With this MAC

convention, hubs have the choice to receive and pass along

radio messages even when they are operating in low-power

mode. It utilizes an effective wake-up component to achieve

powerful productivity: with a wake-up recurrence of 8 Hz, the

inert radio obligation cycle is just 0.6% [29].

• LiteOS

 Like Contiki, Tiny OS, RIOT, LiteOS is an open source

similar to Unix OS. Its development environment is UNIX

based. LiteOS includes three Major components LiteFS,

LiteShell, and the kernel. LiteOS has an Event Tracing

mechanism to provide in depth knowledge of system. A buffer

exists in processing applications to record initiated events. It

has an advanced mechanism to achieve memory security that

when the buffer runs out of space, it gets emptied in an external

flash file. It supports plug and play routing stack. Various

applications Like smart homes and smart cities using LiteOS

[12].

Now we will compare them on behalf of some features:

• General

Although they are all open-source operating systems, none

of them have the same licence. FreeRTOS has an additional

GPL license. TinyOS and Contiki have a BSD license. Contiki

OS has a growth rate of 74%. FreeRTOS has a 63% growth rate

between 2015 and 2017. These two are more effective than

others.

• Architecture

We have compared the operating systems on the bases of

their architecture. The microkernel is a critical component of

most operating systems due to its small size and high volume

of context changes. However, the kernel architecture

determines real-time capabilities. That’s why FreeRTOS is

very useful for real-time working because it has microkernel

OS architecture.

• Scheduling

A key element in the system's performance is the scheduling

technique. Some IoT frameworks may have exacting real-time

constraints and an IoT OS must have the option to give the

planning required for these sorts of frameworks. RTOS is based

on multitasking scheduling therefore the preemptive scheduler

is mostly preferred.

Contiki uses a hybrid model for the purpose of attempting

preemptive behavior due to the requirement for preemptive

scheduling. This approach relies on a preemptive

multithreading event-driven kernel for application libraries that

are linked with programmers. Contiki includes a real timer

library to perform real-time scheduling tasks in order to provide

real-time capabilities. However, there is no real-time

scheduling application compared to freeRTOS. FreeRTOS is

therefore more reliable than others.

• Programming model

The operating system's performance and productivity are

significantly influenced by the programming model. It should

help in expanding efficiency for engineers just as using

abstraction to the underlying system.

As the Contiki and Tiny operating systems are event-driven,

they use less memory than FreeRTOS. In this specific

circumstance, the event driven Contiki kernel doesn't give

multi-stringing without anyone else however their

multithreaded applications use protothreads through optional

libraries. TinyOS version 2.1 also provides support for

multithreading through the use of TOS Threads, which employ

a cooperative threading strategy, similar to how Contiki

employs proto threads to join multithreading.

Table I provides a comparison of IoT operating systems

based on different features, highlighting their advantages and

disadvantages. Table II presents a comparison of various

operating systems based on the evaluation criteria used in the

research study, The table summarizes the key findings of the

study and presents the conclusions drawn based on the

evaluation results while Table III describe Operating systems

representations based on performance.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 4

Table I: IoT OS Advantages, disadvantages and Comparison based on different features.

OS Architecture
Programming

Model
Scheduling

Memory

Management

File System

Management
Advantage Limitation

Contiki Monolithic Protothreads
Cooperative,

Preemptive
Dynamic Coffee flash

Support File System

for a

Flash and Low

Module Interaction

Cost

The file's size

needs to be

reserved in

advance and

Lack of memory

protection unit.

Tiny OS Monolithic
Event-driven,

Threads
Cooperative Static

Single file

system

optimal competition

without increasing

resource

consumption

and reduce the total

amount of energy

used

Lack of

Memory usage

prediction. It

cannot handle the

large

Number of files

at a time.

RIOT microkernel
Multithreadin

g

Preemptive,

Priority

Based

Dynamic

Static

FAT file

system

It includes a method

for real-time

scheduling and is

capable of supporting

a filesystem designed

for FAT embedded

devices.

There is no

MMU or

Floating

Point Unit

LiteOS Modular
Multithreaded,

Event-driven

Priority

Based, RR
Dynamic LiteFS

The file system is

alike to the Unix file

system and dynamic

allocation creates a

flexible system.

There are no

built-in

networking

protocols

Tizen ARM, x86 Object-oriented Preemptive Virtual Memory EXT4, F2FS
Good performance,

supports many device

types

Limited

community

support, limited

app ecosystem

Ubuntu

Core
ARM, x86 Object-oriented Preemptive Virtual Memory

EXT4, BTRFS,

SquashFS

Security-focused,

supports

containerization

Limited hardware

support, limited

commercial

adoption

Mbed

OS
ARM Event-driven Co-operative Heap and Stack

FAT file

system
Lightweight, supports

low-power devices

Limited support

for non-ARM

architectures

FreeRTO

S
ARM, x86 Event-driven Co-operative Heap and Stack FAT, NTFS

Small footprint,

suitable for embedded

systems

Limited features

compared to

desktop OSes

Contiki ARM, x86 Event-driven Co-operative Heap and Stack Proprietary
Good for IoT

applications, supports

multiple platforms

Limited

community

support, not

suitable for high-

performance

applications

Windows

10 IoT
x86, ARM Object-oriented Preemptive Virtual Memory NTFS, FAT32 Familiar interface for

Windows users

Limited hardware

support, not open-

source

Zephyr ARM, x86 Event-driven Preemptive Heap and Stack
FAT file

system
Supports many

platforms, easy to use

Limited

community

support, not

suitable for high-

performance

applications

OpenWS

N
ARM Event-driven Preemptive Heap and Stack Proprietary Optimized for low-

power networks

Limited

community

support, not

suitable for

general-purpose

applications

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 5

NuttX ARM, x86 Event-driven Preemptive Virtual Memory
FAT file

system

Good for real-time

systems, supports

POSIX

Limited hardware

support, not

suitable for high-

performance

applications

Linux ARM, x86 Object-oriented Preemptive Virtual Memory
EXT4, BTRFS,

XFS

Supports many

applications and

platforms, open-

source

May require more

resources than

other OSes, can be

complex to

configure

Table II: Summarization of key findings of the study and conclusions based on the evaluation results for various operating systems

Study Title Operating Systems

Compared

Evaluation

Criteria

Key Findings Conclusion

Attack mapping for

IoT" (2022) [24]

Tizen for IoT, UbuntuCore,

Mbed OS, RIOT, Amazon

FreeRTOS, Contiki,

Windows 10 IoT

Real-time

performance,

connectivity,

security,and

battery

consumption

Contiki and RIOT performed best in terms of power

consumption, While Mbed OS and RIOT earned highly in

terms of security and connectivity. Real-time performance for

Windows 10 IoT was determined to be satisfactory.

"A Survey on

Resource

Management and

Security Issues in

IoT Operating

Systems." (2022)

[23]

Contiki, TinyOS,

FreeRTOS, RIOT and

Zephyr

Compatibility

with sensors,

reliability, energy

economy,

scalability,

security

All five operating systems worked with various devices,

Strong security elements were present in all five operating

systems. TinyOS was the most sensor-friendly. The most

reliable systems were Contiki BUT TinyOS had most

compatibility while FreeRTOS was the most energy-efficient.

Zephyr and RIOT were the most scalable.

" IoT Solutions with

Eclipse IoT

Technologies: An

Open-Source

Approach to Edge

Computing " (2022)

[25]

Zephyr, FreeRTOS,

Contiki, and RIOT

Memory footprint,

power

consumption, real-

time capabilities,

security,

development

community

All four operating systems offered strong security features,

Zephyr used smallest memory footprint , RIOT consumed least

power , FreeRTOS had the best real-time performance. While

Contiki had largest development community.

"Vision, Challenges

and future

perspective of low

constrained devices

IOT operating

systems " (2020) [22]

Contiki, TinyOS, RIOT,

FreeRTOS, Zephyr, NuttX,

Linux

Memory usage,

power

consumption,

network

performance

RIOT was found to be the best in terms of memory usage and

power consumption. TinyOS and Contiki performed well in

network performance. Zephyr and FreeRTOS were found to

have good scalability.

“Operating systems

for Internet of Things

low-end devices:

Analysis and

benchmarking”(2019

)[27]

Contiki, FreeRTOS, RIOT,

Zephyr

Memory

requirements,

power

consumption, real-

time skills, and

security

All four operating systems had strong security features, but

FreeRTOS had the best real-time performance and RIOT used

the least memory and energy. while Zephyr and Contiki have

high energy effectiveness.

" An investigation on

several operating

systems for internet

of things "

(2019)[21] [28]

Android Things, Contiki,

FreeRTOS, RIOT, TinyOS

Connectivity,

security, power

consumption, real-

time performance

Contiki and RIOT were found to have excellent power

consumption, Android Things was found to have good

connectivity and security while TinyOS was found to work

well in real-time.

" A study on internet

of things operating

systems " (2019) [10]

Contiki, TinyOS,

FreeRTOS, RIOT, Linux

Energy

consumption,

memory usage,

network

performance

It was discovered that TinyOS and FreeRTOS had excellent

network performance while RIOT and contiki had greatest

memory and energy

""Performance study

of real‐time

operating systems for

internet of things

devices " (2018) [26]

Contiki, RIOT, TinyOS,

FreeRTOS, OpenWSN,

Linux

Energy

consumption,

memory usage,

network

performance

RIOT and Contiki were found to have the best energy

consumption and memory usage. TinyOS and FreeRTOS were

found to have good network performance.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 6

Table III: Operating systems representations based on performance.

Operating

System

Real-time

Performance

Connect

ivity

Secur

ity

Battery

Consum

ption

Compati

bility

with

Sensors

Rel

iabi

lity

Ener

gy

Econ

omy

Scal

abili

ty

Memo

ry

Footpr

int

Network

Performa

nce

Developm

ent

Communit

y

Power

Consumptio

n

Tizen ✓ ✓ ✓ ✓ × × × × × × × ×

Ubuntu

Core
× ✓ ✓ × × × × × × × × ×

Mbed OS × ✓ ✓ × × × × × × × × ✓

RIOT ✓ ✓ ✓ ✓ × × × ✓ ✓ × ✓ ×

Amazon

FreeRTOS
× ✓ ✓ × × × ✓ × × × × ×

Contiki × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ×

Windows

10 IoT
✓ ✓ ✓ ✓ × × × × × ✓ × ×

Zephyr ✓ ✓ ✓ × × × × ✓ ✓ × ✓ ×

TinyOS × × ✓ × ✓ ✓ ✓ ✓ × ✓ × ×

FreeRTOS × × ✓ × × × ✓ ✓ × ✓ × ✓

Open

WSN

× × ✓ × ✓ × × × ✓ ✓ × ✓

NuttX × ✓ × × × × × ✓ × × ×

Linux × ✓ ✓ × × × × × ✓ ✓ ✓ ×

✓=Feature is present or performs well ×= Feature is not present or performs poorly

Graphical representation:

Fig. 2: Graphical Representation of IOT OS performances

High=Feature is present or performs well
Low= Feature is not present or performs poorly

IV. CONCLUSION

Different operating systems was selected and discuss

according to their usage and features. On behalf of many

challenges and newness, it is difficult to find which one is the

best operating system. We present some major concerns for OS

IoT which are OS architecture, programming model, and real-

time capability. After that, we compare the Operating systems

according to these all concerns. But it is difficult to say which

one is best. We can choose the best operating system according

to the requirement of IoT devices. Although the criteria used to

assess the operating systems vary from study to study, all place

a strong emphasis on factors relevant to Internet of Things

(IoT) devices, such as power consumption, real-time

capabilities, scalability, and security. Despite the fact that each

operating system varies in strengths and weaknesses based on

Real-time
Performance
Connectivity

Security

Battery
Consumption
Compatibility
with Sensors

H
i

Lo

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 14, NO. 2, APRIL 2023

[ISSN: 2045-7057] www.ijmse.org 7

the evaluation criteria, they were all created to handle the

particular problems faced by IoT devices. This paper can help

researchers in understanding the Internet of Things-IoT, their

features, advantages, and Limitations.

REFERENCES

[1] Gaur, Padmini, and Mohit P. Tahiliani. "Operating systems for

IoT devices: A critical survey." In 2015 IEEE region 10

symposium, pp. 33-36. IEEE, 2015.

[2] Sabri, Challouf, Lobna Kriaa, and Saidane Leila Azzouz.

"Comparison of IoT constrained devices operating systems: A

survey." In 2017 IEEE/ACS 14th International Conference on

Computer Systems and Applications (AICCSA), pp. 369-375.

IEEE, 2017.

[3] Asim, Muhammad, and Waseem Iqbal. "Iot operating systems

and security challenges." International Journal of Computer

Science and Information Security 14, no. 7 (2016): 314.

[4] Baccelli, Emmanuel, Cenk Gündoğan, Oliver Hahm, Peter

Kietzmann, Martine S. Lenders, Hauke Petersen, Kaspar

Schleiser, Thomas C. Schmidt, and Matthias Wählisch. "RIOT:

An open-source operating system for low-end embedded

devices in the IoT." IEEE Internet of Things Journal 5, no. 6

(2018): 4428-4440.

[5] Zikria, Yousaf Bin, Heejung Yu, Muhammad Khalil Afzal,

Mubashir Husain Rehmani, and Oliver Hahm. "Internet of

things (IoT): Operating system, applications and protocols

design, and validation techniques." Future Generation

Computer Systems 88 (2018): 699-706.

[6] Baccelli, Emmanuel, Oliver Hahm, Mesut Günes, Matthias

Wählisch, and Thomas C. Schmidt. "RIOT OS: Towards an OS

for the Internet of Things." In 2013 IEEE conference on

computer communications workshops (INFOCOM WKSHPS),

pp. 79-80. IEEE, 2013.

[7] Musaddiq, Arslan, Yousaf Bin Zikria, Oliver Hahm, Heejung

Yu, Ali Kashif Bashir, and Sung Won Kim. "A survey on

resource management in IoT operating systems." IEEE

Access 6 (2018): 8459-8482

[8] https://www.quora.com/What-is-the-difference-between-

RTOS-and-FreeRTOS.

[9] https://en.wikipedia.org/wiki/Contiki

[10] Al-Taleb, Najla, and Nasro Min-Allah. "A study on internet of

things operating systems." In 2019 IEEE International

Conference on Electrical, Computer and Communication

Technologies (ICECCT), pp. 1-7. IEEE, 2019.

[11] Javed, Farhana, Muhammad Khalil Afzal, Muhammad Sharif,

and Byung-Seo Kim. "Internet of Things (IoT) operating

systems support, networking technologies, applications, and

challenges: A comparative review." IEEE Communications

Surveys & Tutorials 20, no. 3 (2018): 2062-2100.

[12] Bansal, Sharu, and Dilip Kumar. "IoT ecosystem: A survey on

devices, gateways, operating systems, middleware and

communication." International Journal of Wireless Information

Networks 27 (2020): 340-364.

[13] https://www.researchgate.net/publication/320000233_A_Com

parative_Study_between_Operating_Systems_Os_for_the_Inte

rnet_of_Things_IoT

[14] Chandra, Tej Bahadur, Pushpak Verma, and A. K. Dwivedi.

"Operating systems for internet of things: A comparative

study." In Proceedings of the Second International Conference

on Information and Communication Technology for

Competitive Strategies, pp. 1-6. 2016.

[15] Levis, Philip, Samuel Madden, Joseph Polastre, Robert

Szewczyk, Kamin Whitehouse, Alec Woo, David Gay et al.

"TinyOS: An operating system for sensor networks." Ambient

intelligence (2005): 115-148.

[16] Adekotujo, Akinlolu, Adedoyin Odumabo, Ademola

Adedokun, and Olukayode Aiyeniko. "A Comparative Study of

Operating Systems: Case of Windows, UNIX, Linux, Mac,

Android and iOS." International Journal of Computer

Applications 176, no. 39 (2020): 16-23.

[17] Jaskani, Fawwad, Saba Manzoor, Muhammad Amin,

Muhammad Asif, and Muntaha Irfan. "An investigation on

several operating systems for internet of things." EAI Endorsed

Transactions on Creative Technologies 6, no. 18 (2019).

[18] Silva, Miguel, David Cerdeira, Sandro Pinto, and Tiago Gomes.

"Operating systems for Internet of Things low-end devices:

Analysis and benchmarking." IEEE Internet of Things

Journal 6, no. 6 (2019): 10375-10383.

[19] Umashankar, M. L., S. Mallikarjunaswamy, N. Sharmila, D.

Mahesh Kumar, and K. R. Nataraj. "A Survey on IoT Protocol

in Real-Time Applications and Its Architectures." In ICDSMLA

2021: Proceedings of the 3rd International Conference on Data

Science, Machine Learning and Applications, pp. 119-130.

Singapore: Springer Nature Singapore, 2023.

[20] Malallah, HayfaaSubhi, Subhi RM Zeebaree, Rizgar R. Zebari,

Mohammed AM Sadeeq, Zainab Salih Ageed, Ibrahim

Mahmood Ibrahim, Hajar Maseeh Yasin, and Karwan Jameel

Merceedi. "A comprehensive study of kernel (issues and

concepts) in different operating systems." Asian Journal of

Research in Computer Science 8, no. 3 (2021): 16-31.

[21] Al-Boghdady, Abdullah, Khaled Wassif, and Mohammad El-

Ramly. "The presence, trends, and causes of security

vulnerabilities in operating systems of IoT’s low-end

devices." Sensors 21, no. 7 (2021): 2329.

[22] Rounaq, Sumera, and Muhammad Iqbal. "Vision, Challenges

and Future Perspectives of Low Constrained Devices IOT

Operating Systems: A Systematic Mapping Review." European

Journal of Engineering and Technology Research 5, no. 12

(2020): 107-115.

[23] AlDossary, Noura, Sarah AlQahtani, and Haya AlUbaidan. "A

Survey on Resource Management and Security Issues in IoT

Operating Systems." In 2022 Fifth International Conference of

Women in Data Science at Prince Sultan University (WiDS

PSU), pp. 26-30. IEEE, 2022.

[24] Bathgate, William. "Attack Mapping for IoT." (2022).

[25] Desbiens, Frédéric. "Operating Systems." In Building

Enterprise IoT Solutions with Eclipse IoT Technologies: An

Open-Source Approach to Edge Computing, pp. 243-267.

Berkeley, CA: Apress, 2022.

[26] Raymundo Belleza, Rafael, and Edison de Freitas Pignaton.

"Performance study of real‐time operating systems for internet

of things devices." IET Software 12, no. 3 (2018): 176-182.

[27] Silva, Miguel, David Cerdeira, Sandro Pinto, and Tiago Gomes.

"Operating systems for Internet of Things low-end devices:

Analysis and benchmarking." IEEE Internet of Things

Journal 6, no. 6 (2019): 10375-10383.

[28] Jaskani, Fawwad, Saba Manzoor, Muhammad Amin,

Muhammad Asif, and Muntaha Irfan. "An investigation on

several operating systems for internet of things." EAI Endorsed

Transactions on Creative Technologies 6, no. 18 (2019).

[29] Homayouni, Sara, and Reza Javidan. "ERA-ContikiMAC: An

adaptive radio duty cycling layer in Internet of Things." In 2018

9th International Symposium on Telecommunications (IST), pp.

74-79. IEEE, 2018.

