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Abstract— Planetary gearboxes play a significant role in 

industrial applications and the necessity of condition monitoring 

with non-destructive tests is increasing. In this paper we 

presented an intelligent method for fault detection and 

classification of this gearbox using vibration signals. This 

method focuses on the worn gears detection; therefore three 

classes were defined, namely, healthy gears, ring gear with worn 

tooth face and planetary gear with worn tooth face. Each class 

has 60 samples that divided in two parts: 45 samples for training 

data and 15 samples for testing system. The time signals were 

transferred to frequency domain by Fast Fourier Transform 

(FFT). Then 24 statistical features of frequency signals were 

extracted. The extracted feature was used to feed SVM for fault 

classification. Using these techniques together, 95.6% and 92.3% 

classification accuracy is gained for train and test data which 

show the quality and high ability of generated fault diagnosis 

system. 
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I. INTRODUCTION 

ue to the importance of monitoring the health of system 

without stopping, the uses of non-destructive tests are 

widely improved. Condition monitoring is a 

conventional method for preventing machineries from failure 

and breakage.  
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The use of conditional monitoring allows Maintenance to 

be scheduled or other actions to be taken to avoid the 

consequences of failure, before it occurs. The condition 

monitoring and fault detection schemes improve gear 

transmission systems Reliability and reduce their failure 

occurrence [1]. Automation, as another significant stage in 

industries commonly implemented to reduce the cost of 

production, quality control and maintenance. Based on these 

theories several methods are developed to automate the 

condition monitoring and quality control of systems. 

The undeniable abilities of artificial intelligence on this 

way, persuades researches to use different methods of AI in 

their fields of study. Fuzzy Logic, Neuro-Fuzzy systems, 

Artificial Neural networks and Support Vector Machine 

algorithm are the most usual algorithms for implementing 

artificial Intelligence [2]. Beside these techniques, acoustic 

signals and signal processing are commonly used for non-

destructive tests in fault diagnosis systems. Both vibration and 

acoustic signals carry rich and useful information about the 

condition of the system and it has been very popular for 

condition monitoring and early fault detection of gearboxes 

[1]. 

Rotating machineries are used considerably utilized in the 

manufacturing of industrial products. Gearboxes as a key 

rotating motion transmission component, plays a critical role 

in industrial applications [3]. Therefore, attracts research 

interests in condition monitoring and fault diagnosis of this 

equipment. Importance of gears and bearings in condition 

monitoring of the machine is undeniable, thus, processing and 

analysis of acoustic and vibration signals of the gearbox gears 

is the common way of extracting reliable representative of the 

gearbox condition [4], [5].  

Planetary gear boxes are one of the most common types 

of gearboxes that Because of their wide gear ratios, especially 

in a heavy industrial machines and helicopter are considered. 

It is composed of three main components that consist of: i) 

ring gear, ii) planets gears, iii) sun gear. Their main advantage 

is low weight and occupies less space on transmission lines. 

The final drive of MF285 tractor that was used in this research 

is a type of planetary gearbox and it is one of the main 

components of this tractor’s power transmission line. So 

There recognition and classification of its defects is an 

important step in maintaining the power transmission lines. 

D



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 5, MAY 2012 

[ISSN: 2045-7057]                                                                                      www.ijmse.org                                                                                      23 

II. EXPRIMENTAL SETUP 

For this work, at first a test bed was built to mount the 

final drive and electromotor on it. The 3KW electromotor was 

used to drive power to the gearbox using a coupling power 

transmission. The input shaft of final drive was drove by the 

electromotor in 200RPM and its speed was controlled by an 

inverter. The experiment setup is shown in Fig. 1.  

Three classes were classified in this work, namely, 

healthy gearbox, tooth worn face of planetary gears and tooth 

worn face of ring gear, that each class consider a type of worn 

fault as a most common fault of gearboxes. These classes are 

shown in Fig. 2. 

  

 

 
 

 

 
 

 

 

 

Then the velocity signals were collected by an 

accelerometer type VMI102 that set vertically on the surface 

of final drive. Also the Easy-viber was used as data accusation 

with sampling rate of 8192 Hz. 

III.    SIGNAL PEOCESSING AND FEATURE 

EXTRACTION 

In recent articles, advanced non-parametric approaches 

have been considered for signal processing such as wavelets, 

Fast Fourier Transform (FFT), short time Fourier transform 

(STFT) [1], [6]. Most noise and vibration-acoustic analysis 

instruments utilize a Fast Fourier Transform (FFT) which is a 

special case of the generalized Discrete Fourier Transform. It 

converts the vibration signal from time domain representation 

to its equivalent frequency domain representation. In this 

study FFT signal processing technique was employed to 

transfer the vibration signals from time domain to frequency 

domain. Fig. 3 shows the time signal and Fig. 4 shows the 

FFT signal of one sample of each class that was studied in this 

research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. The experimental setup 

Fig. 2. The different defect of gears: a) Healthy b) worn tooth 

face Ring gear c) worn tooth face planet gear 

a 

b 

c 

Fig. 3. The time signal of classes: a) Healthy b) worn tooth face 

Ring gear c) worn tooth face planet gear 
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Fig. 4. The frequency signal of classes:  a) Healthy b) worn tooth face Ring 

gear c) worn tooth face planet gear 

 

Every velocity signal was analyzed with FFT signal 

processor by MATLAB software and after 24 statistical and 

vibration parameters of frequency domain signals was 

extracted such as average, maximum, minimum, range, 

standard deviation and etc. the selected features was 

employed to feed the SVM classifier for fault detection and 

classification.  

IV.   SUPPORT VECTOR MACHINE 

Support vector machine (SVM) has become an 

increasingly popular technique for machine learning activities 

including classification, regression, and outlier detection. 

Detailed reviews on SVM are available elsewhere [7], [8]. 

The idea of using SVM for separating two classes is to find 

support vectors (i.e., representative training data points) to 

define the bounding planes, in which the margin between the 

both planes is maximized. 

A. SVM Mathematics 

Given a training set of N data points { }
1

,
N

k k k
y x

=
, 

where xk=R
n
 is the k th inputpattern and yk=R

n
 is the k th 

output pattern, the support vector method approachaims at 

constructing a classifier of the form: 

 

1

( ) ( , )
N

k k k

k

y x sign y x x bα ψ
=

= +
 
  
∑                            (1)   

Where kα are positive real constants and bis a real constant. 

For (.,.)ψ  one typically has the following choices: 

( , ) T

k kx x x xψ = (linear SVM); ( , ) ( 1)T d

k kx x x xψ = +  

(polynomial SVM of degree d); 

{ }2 2( , ) exp 2k kx x x xψ σ= − −  (RBF SVM); 

( , ) tanh[ ]T

k kx x x xψ κ θ= +  (two layer neural SVM), 

where σ , κ  and θ  are constants.  

The classifier is constructed as follows. One assumes that 

( ) 1T

kw x bϕ + ≥ if 1ky = +                                             (2) 

( ) 1T

kw x bϕ + ≤ − if 1ky = −  

Which is equivalent to 

[ ( ) ] 1T

k ky w x bϕ + ≥ , 1,...,k N=                                 (3) 

Where (.)ϕ  is a nonlinear function which maps the input 

space into a higher dimensional space. However, this function 

is not explicitly constructed. In order to have the possibility to 

violate (3), in case a separating hyperplane in this higher 

dimensional space does not exist, variables kξ are introduced 

such that: 

[ ( ) ] 1T

k k ky w x bϕ ξ+ ≥ −     ,     1,...,k N=
     

          (4) 

0kξ ≥    ,    1,...,k N=  

According to the structural risk minimization principle, 

the risk bound is minimized by formulating the optimization 

problem 

1
,

1

1
min ( , )

2k

N
T

k k
w

k

w w w c
ξ

ξ ξ
=

∂ = + ∑                                 (5) 

subject to (4). Therefore, one constructs the Lagrangian 

a 

b 

c 
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by introducing Lagrange multipliers 0kα ≥ ,  0kυ ≥  (

1,...,k N= ) The solution is given by the saddle point of the 

Lagrangian by computing 

1
, ,,

max min ( , , ; , )
kk k

k k k
w b

w b
ξα υ

ξ α υl                                 (7) 

 

One obtains 
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w
α ϕ
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1

1
0 0

N

k kk
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b
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∂
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(8) 

1 0 0 k

k

cα
ξ
∂

= → ≤ ≤
∂
l

    ,   1,...,k N=  

 

which leads to the solution of the following quadratic 

programming problem 

1

, 1 1

1
max ( ; ( )) ( ) ( )

2k

N N
T

k k k l k l k l k

k l k

Q x y y x x
α

α ϕ ϕ ϕ α α α
= =

=− +∑ ∑                                                                          

(9) 

Such that 

1

0
N

k k

k

yα
=

=∑   ,   0 k cα≤ ≤   ,   1,...,k N=  

The function ( )kxϕ in (9) is related then to ( , )kx xψ by 

imposing 

( ) ( ) ( , )T

k kx x x xϕ ϕ ψ=                                         (10) 

Which is motivated by Mercer’s Theorem. Note that for 

the two layer neural SVM, Mercer’s condition only holds for 

certain parameter values of κ andθ . 

The classifier (1) is designed by solving 

1

, 1 1

1
max ( ; ( , )) ( , )

2k

N N

k k l k l k l k l k

k l k

Q x x y y x x
α

α ψ ψ α α α
= =

=− +∑ ∑  (11) 

 

subject to the constraints in (9). One does not have to 

calculate w nor ( )kxϕ in order to determine the decision 

surface. Because the matrix associated with this quadratic 

programming problem is not indefinite, the solution to (11) 

will be global [9]. 

Furthermore, one can show that hyperplanes (3) 

satisfying the constraint 2w a≤ have a VC-dimension h

which is bounded by 

 

2 2min([ ], ) 1h r a n≤ +                                               (12) 

 

where [.] denotes the integer part and r is the radius of the 

smallest ball containing the points 1( ),..., ( )Nx xϕ ϕ . Finding 

this ball is done by defining the Lagrangian 

22 2

2

1

( , , ) ( ( ) / 2)
N

k k k

k

r q r r x qλ λ ϕ
=

= − − −∑l     (13) 

where q is the center of the ball and kλ are positive Lagrange 

multipliers. In a similar way as for (5) one finds that the 

center is equal to ( )k kk
q xλ ϕ=∑ , where the Lagrange 

multipliers follow from 

 

2

, 1 1
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k

N N
T T

k k k l k l k k k
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α

λ ϕ ϕ ϕ λλ λϕ ϕ
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such that 

1

1
N

k

k

λ
=

=∑    ,   0kλ ≥   ,    1,...,k N=  

 

Based on (10), 2Q can also be expressed in terms of 

( , )k lx xψ . Finally, one selects a support vector machine 

with minimal VC dimension by solving (11) and computing 

(12) from (14) [10]. 

B. Least square SVM 

In this section we introduce a least squares version to the 

SVM classifier by formulating the classification problem as 

2

3

1
, ,

1 1
min ( , , )

2 2

N
T

k

k
w b e

w b e w w eγ
=

∂ = + ∑                    (15) 

Subject to the equality constraints 

[ ( ) ] 1T

k k ky w x b eϕ + = −   ,   1,...,k N=                (16) 

One defines the Lagrangian 

3 3
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Where kα  are Lagrange multipliers (which can be either 

positive or negative now due to the equality constraints as 

follows from the Kuhn-Tucker conditions. The conditions for 

optimality 
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3 0 [ ( ) ] 1 0T

k k k
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y w x b eϕ
α
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= → + − + =
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l

  ,   

1,...,k N=  

Can be written immediately as the solution to the 

following set of linear equations  

�� 0 0 ���0 0 0 ���0 0 �� ��� � � 0 	 
���� � �0001��	                                         (19) 

where 1 1[ ( ) ;...; ( ) ]T T

N NZ x y x yϕ ϕ= , 1[ ;...; ]NY y y= , 

1 [1;...;1]
→

= , 1[ ;...; ]Ne e e= , 1[ ;...; ]Nα α α= . The 

solution is also given by:         

�0 ���� ��� � �����,���� � �01���                                            (20)                

Mercer’s condition can be applied again to the matrix Ω � ���, where       

1 1( ) ( ) ( , )T

kl k l k k l ky y x x y y x xϕ ϕ ψΩ = =                   (21) 

 

Hence, the classifier (1) is found by solving the linear set 

of Equations (20)–(21) instead of quadratic programming. 

The parameters of the kernels such as σ  for the RBF kernel 

can be optimally chosen according to (12). The support values 

kα  are proportional to the errors at the data points (18), while 

in the case of (14) most values are equal to zero [11]. 

We have implemented this method by using LS-SVM 

Toolbox. The software is available at 

http://www.esat.kuleuven.ac.be/sista/lssvmlab 

V. SIMULATION RESULTS 

In this research, three classes were defined for 

classification. Each class has 60 samples that divided in two 

parts: i) 45 samples for training SVM classifier ii) 15 samples 

for testing data.  

This work was implemented on all 24 features training 

and test data. The performance of LS-SVM in all features for 

training and test data was 95.6% and 91.3%, respectively. 

This accuracy shows the ability and quality of presented 

system for fault diagnosis and classification of planetary 

gearbox. 

VI. CONSLUSIONS  

In this paper consider an intelligent system for fault 

detection and classification of MF285 tractor`s final drive 

planetary gearbox, based on vibration signals, FFT signal 

processor and SVM classifier. The accuracy of train and test 

data was 95.6% and 91.3% that great than 85% so acceptable. 

The results show that the LS-SVM is appropriate classifier for 

planetary gearbox fault diagnosis. Also the results showed the 

ability of this procedure in planetary gearbox condition 

monitoring. 
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