
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 6, JUNE 2012

[ISSN: 2045-7057] www.ijmse.org 7

Abstract—The research proposal is to innovate a “Network

Communication Application Programming Interface” which

provides a platform to program network, communication

applications on top of the API. The communication

functionalities to be provided in this API are not limited to wired

communication but it can be extended to program ‘wireless’ and

‘wireless sensor networks’. For the API to be used in wireless

sensor network programming it is necessary that the

functionalities to be provided by the API are programmed in a

programming environment and in such a way that it consumes

fewer resources considering the limited processing capabilities

and power of the wireless sensor network platform. The design

of this API will be in such a way that the network communication

functionalities will be programmed purely and completely in C

language and these will be in the form of Dynamic Link Libraries

as an extension to the operating system kernel. For providing the

WSN programming mode in this API it is necessary to avoid any

translation or simulation layer for the ‘API core networking

functionalities’. It is necessary to deploy the API in form of DLLs

to directly communicate with the operating system in its native

language i.e. DLLs as windows itself is a collection of dynamic

link libraries mostly programmed in Win32/64 SDK C/C++. This

API can be used to program the communication layers of the

windows based WSN applications and the upper layer graphical

user interface and monitoring applications can be programmed in

any of the high level language. Despite WSN network

programming this API will be useful to develop applications

related to ‘Telephony’ or ‘TV broadcast’ and the scope is

extendable to vast area of network communications applications.

The area of research for this MS(Computer Science) Thesis is to

propose, design and develop such a Network Communication

API. In this paper, at first stage, the design of the API is

presented.

Keywords—Application Programming Interface, Dynamic Link

Libraries, Operating System Kernel and Wireless Sensor Networks

This work was part of my postgraduate research in Thesis for MS (Computer

Science) Degree with specialization in Computer Networks from Virtual

University of Pakistan. The research was carried out under supervision of my

Thesis Supervisor: Dr. Malik Muhammad Saad Missen.

Noman Sohaib Qureshi is with the Department of Computer Science &

Engineering, University of Engineering & Technology, Lahore (Gujranwala

Campus-RCET), (phone: +923009682419; e-mail: nomee_46@hotmail.com).

Also Mr. Noman Sohaib Qureshi is a postgraduate research scholar in

MS(Computer Science) at Virtual University Lahore Pakistan

Dr. Mailk Muhammad Saad Missen is with the Department of Computer

Science and Information Technology, The Islamia University of Bahawalpur,

Pakistan (e-mail: SaadMalik_2001@hotmail.com).

I. INTRODUCTION

y the research and survey in the area of ‘Communication

APIs’, it is observed that most of the research for Network

API is limited to a specific domain of communication

functionalities e.g. it may be for wireless sensor network

programming or may be programmed for wired or wireless

communication specifically and usually which are developed

for open source platforms. Research is necessary in network

programming to develop a communications API whose domain

is not limited to connectivity mode and which is useful both

for wired and wireless communication and can be deployed for

generic communication applications and that of sensor

network applications as well. Another aspect found in current
research is that designs and methods for internetworking

between the connectionless and connection-oriented networks

do exist [1]. However research for a generic API which

provides these functionalities is necessary. Though general

mode of wired or wireless communication APIs exist for

commercial operating systems but the area of WSN API

development is in its inception for commercial operating

systems and an API for this purpose is necessary that may

serve as a development core for the WSN and communication

applications.

II. EXISTING COMMUNICATION APIS REVIEW

Today, there are several Network APIs some of which are

proposed only, others are proposed and designed and yet some

are proposed designed and developed. However one aspect is

found common in the current APIs that they are domain

specific and not generic in terms of application. In the section

that follows a survey of the major existing APIs is presented as

under.

“A Network Application Programming Interface for Data

Processing in Sensor Networks” [2] is a proposed API whose

domain is specific for sensor network communication

applications. In the Rice University Technical Report

TREE0705 the API is proposed and the initial design phase is

presented however development and implementation is left for

future research. It is a design of a higher level API which may

provide middleware implementation in sensor network

communication applications. This API proposes several node

Generic Application Programming Interface

Design for Communication Protocols

Noman Sohaib Qureshi
1
 and Dr. Malik Muhammad Saad Missen

2

 1
Department of Computer Science and Engineering, University of Engineering and Technology, Lahore Pakistan

(Gujranwala Campus-RCET)
2
Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Pakistan

B

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 6, JUNE 2012

[ISSN: 2045-7057] www.ijmse.org 8

based functionalities which are not supported by standard

sensor network programming tools such as that found in the

TinyOS [3]. The main focus of this proposed API is to

overcome several deficiencies found in current WSN

development tools which are tested on WSN simulators e.g.

ns-2 etc. It provides abstract network services for

communication in sensor networks. This proposed API

supports three modes of communication in the sensor based

networks i.e address based, region based and device hierarchy

[4].

“Smart Antenna API for SDR Network” [5] is an API now

under development phase [6]. This API is hardware specific

and mainly ‘software defined radio’ centric and may not work

on generic platforms and is not a suitable development

interface for networks applications other than those involving

SDRs communication. Also it communicates directly with the

hardware without interaction with the kernel of an underlying

system software e.g. TinyOS, Windows or UNIX. The team

working on this API has proposed a hardware platform for

employing the open architecture which remains unchanged for

the implementation of the API [7]. The behavior of the

hardware platform can be altered by the software API for

specific functionality. The benefit is that it is the most

important feature of this SDR API technology that a system

update or an addition or deletion or modification of services

can be performed with ease and without altering the existing

hardware [8]. But the element common to other

communication APIs is found in it as well that this Network

API is also platform dependent and is not generic.

“COIP-K” [9] is a toolkit that can be used to implement

proposed connection oriented internet protocols in UNIX

environment. Although it is not completely an API but it

provides the base in form of kernel functionalities for

developing connection oriented applications which may

interact with UNIX kernel. The COIP-K research focuses

mainly on areas: data packets path in a connection oriented

environment, resource requirement, resource reservation,

termination of the connection and releasing the occupied

resources. COIP-K research group has though proposed and

provided base for the network applications to be build.

However, it only works for connection oriented protocols and

also is heavily dependent on ‘Berkley software distribution

4.3’. The scope of the COIP-K implementation is limited to

BSD and UNIX kernel and the COIP-K research group have

not presented the interface for generic application

development at various heterogeneous platforms and also have

no interface for wireless or wireless sensor networks.

III. GENERIC API DESIGN FOR COMMUNICATION

The main aim of this research is to propose, design and

develop a generic Network Communication API that may be

deployed to wired and wireless communication and which

should be platform independent and may be applied to a wide

variety of network projects/application’s development ranging

from simple communication software development up to

wireless sensor networks.

By the extensive survey of existing literature and the designs

of APIs for communication as presented in review section, the

strengths and weaknesses of various APIs are counted in the

proposal, design and development phase of this ‘Network

Communications API’.

The basic architectural design of the API will that be of a

bridge having many functionalities for both the source and the

destination. Fig. 1elaborates the APIs position as a bridge.

Fig. 1: API acts as a bridge with functionalities

The bridge shown in Fig. 1 may be extended to include few

more essential entities as shown in Fig. 2.

Fig. 2: API working as extended bridge

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 6, JUNE 2012

[ISSN: 2045-7057] www.ijmse.org 9

Fig. 3: Architecture Design for Generic Communication API

The overall architecture of the API is designed and

presented in Fig. 3. The architecture contains the new aspect of

map files. As its name suggests, map file are used for mapping

called DLL functionalities to the API. It also has the capability

of exception handling in already loaded procedures of DLL in

memory by comparing it to the original backup of the

procedure and if the loaded functionalities are altered from the

original then the procedure is refreshed and called again from

the backup using map files. With the development perspective

the map files are the immediate header files in the API

development architecture. These header files must not belong

to development platform. Map files will be programmed and

integrated in the API in such a way that it has higher priority

than the dynamic link libraries in the messaging structure of

system software. This priority is developed so that users own

applications should not have any conflict with the heart of the

operating system which is DLLs working in the kernel, graphic

device interface (GDI) and user part of system software.

Although, as it is necessary to override this default behavior so

it is essential to handle the Native Encoding Definition (NED)

architecture manually by the API which certainly means that

API developers are now also responsible for pragmas in the

data segment of the developed application. The map file

priority based architecture is designed with Native Encoding

Definitions and Global Shared Data Segments. In the

architecture diagram win32 application refers to the C

language application which is compatible with targeted 32-bit

system software messaging structure and can have access to

operating system kernel, GDI and user portion.

There will be three modes of communication in the design

of the API that will be realized in the development phase

which may be used to program various networked

applications. The modes are presented as under:-

 The first mode in design of the API is ‘Blocking
Connectivity Mode’. The ‘Blocking Connectivity’ is just like a

‘Telephone Call’; i.e., establish a connection on some number

and the caller has to wait until the receiver responds to the

caller as the behavior is shown in Fig. 3. This type of

connectivity on networks can benefit to develop a ‘Computer

Telephone Exchange’ by using these ‘Blocking Connectivity

Mode’ functionalities in the API. This connectivity should

have the flexibility of connecting to specified numbers like in

telephone exchanges. For WSN, it may be used for WSN

platforms e.g. like that of a Wireless Robot which have one-to-

one correspondence with the controlling server or for a remote

WSN automated machine gun guarding a specified area etc.

Also, this is not the end; by providing this blocking type

connectivity on some number based system could result in

many type of application to be built by using this API. In

essence it is a connection oriented services mode in our API.

Fig. 4: Showing Blocking Connectivity Mode

 The second mode of communication in the design of this
research is ‘Threading Connectivity Mode’. This type of

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 6, JUNE 2012

[ISSN: 2045-7057] www.ijmse.org 10

connectivity breaks the network process into threads by which

many block states for processes could be avoided as described

in fig. 4; i.e. if a part of a network process is waiting for some

event to happen to proceed further then the whole process

should not be blocked. For this we use threads which are

though efficient but require lots of code complexity and other

challenges. This type of connectivity is very useful for

developing applications for broadcasting e.g. ‘Television

Broadcast Networks’ etc. Threading connectivity mode in the

‘Network Communication API’ will be ideal for developing

communication software that involves broadcasting networks.

In case of WSN if the server is attached to many WSN devices

at a time and there are many wait states in processing then the

threading functionality will be useful.

Fig. 5: Showing Process Breakup into Threads

The third mode of communication functionalities to be

provided in our API is ‘Asynchronous Connectivity Mode’.

This behavior is the one in which the request to receive a

connection can be cancelled. Also after initiating a connection

request it cannot be in block state like ‘Telephone in Blocking

Connectivity’; rather in this mode the application is free to

perform any other activity. It is a connectionless service in our

API.

Fig. 6: Showing Asynchronous API Mode

 This type of connectivity is useful in “Chatting” or

“Conferences” because we can cancel the request any time

and on the same time we can do other activities as well. In

WSN platform connectionless functionality is useful when

there are more than one server controlling the WSN device and

the device is not required to be blocked or bound in one-to-one

connection oriented protocol like described in first goal of this

API. Usually home appliances WSN devices and the WSN

platforms which do not require enhanced secure mode of

communication may be programmed by this functionality.

IV. CONCLUSION

 The API is proposed and designed is this paper. The design

work is done in such a way to accomplish as much as possible

the goal to keep the API ‘generic’ and not application or

hardware specific. It may be deployed to a wide variety of

areas of application. This paper presents the three major

modules in the design phase relating to this API. However the

API is divided into many modules as sub modules of the three

major. Architecture and state transition diagrams are designed

that will be programmed in development phase. The care has

been done at each stage that anything that violates the

precondition of platform independency and interpretability to

other platforms must be intact. The design also provides

exception handling services by means of architecture module

design. Several checks are made to ensure that all modules of

the API function correctly and if any unprecedented event

occurs the backup is restored from the static mapping that will

be maintained in form of map files.

REFERENCES

[1] M. Veeraraghavan and M. Karol, “Internetworking

Connectionless and Connection-Oriented Networks,” IEEE

Communications Magazine, Dec. 1999, published as a Selected

Paper from IEEE BSS’99.

[2] R. Wagner, J. R. Stinnett, M. Duarte, R. Baraniuk, D. B.
Johnson, and T. S. E. Ng, “A Network Application

Programming Interface for Data Processing in Sensor

Networks," Rice University, Tech. Rep. TREE0705, Jan. 2007.

[3] TinyOS Community Forum. http://www.tinyos.net

[4] R. Wagner, M. Duarte, J. R. Stinnett, T. S. E. Ng, D. B.
Johnson, and R. Baraniuk, “A network API-driven survey of

communication requirements of distributed data processing

algorithms for sensor networks,” Rice University, Tech. Rep.,

2006.

[5] Namkyu Ryu, Taeyoul Oh, Seungwon Choi and Soonjoon Park,
“Smart Antenna API for SDR Network, ” Proceeding of the

SDR 05 Technical Conference and Product Exposition. 2005

[6] Seungheon Hyun, June Kim, Seungwon Choi, Lee Pucker, and
Bruce Fette, “Standardizing smart antenna API for SDR

networks”, Software Radio. Vol. 18- P. 34-40, 2007

[7] J. H. Reed (Virginia Tech), “Software Radio: A modern
approach to radio engineering”, Prentice Communications

Engineering and Emerging technology series 2002.

[8] J. Mitola, “The software radio architecture,” IEEE

Communication Mag., vol. 33, no. 5, pp. 26-38, 1995

[9] C. Cranor and G. Parulkar. An Implementation Model for
Connection Oriented Internet Protocols. Journal of

Internetworking, 4(3):133–157, 1993.

