
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 53

Customized Simulation Tool for Mixed Analog-

Digital Integrated Circuits

R. Prakash Rao
1
 and Dr. B.K. Madhavi

2

1St. Peter’s Engineering College, Near Forest Academy, Dulapally, Hyderabad, India
2Geetanjali College of Engineering and Technology, Cheryala, Hyderabad, India

prakashiits@gmail.com, bkmadhavi2009@gmail.com

Abstract– In the past few years, mixed analog-digital IC designs

have become increasingly popular and the complexity of these

chips has been growing. However, one of the major bottlenecks

for achieving low cost and high quality design is the lack of

simulation tools. Currently, designers need to manually split the

design into analog and digital portions which are verified

separately using analog and digital simulators respectively.

There is no easy and robust way to verify the mixed analog-

digital IC designs with one simulator. Hence, we are going to

propose a new methodology to simulate a mixed analog-digital

IC designs with one simulator. To achieve the proposed

methodology we have defined the analog definitions in digital

domain library. This library definition was integrated into the

standard definition library, results in, we have provided a simple

method to use HDL definition in EDA tool such as ModelSim PE

10.1b for analog also. As we are using a single tool for both

analog and mixed signal design IC’s the tool portability or

optimization of the tool had been achieved for mixed analog-

digital integrated circuits.

Keywords– Mixed Analog-Digital IC, Simulation Tools, Analog
Definitions, Library Definition, Modelsim PE 10.1b and Tool
Portability

I. INTRODUCTION

n the past, designers have used a variety of simulation

methodologies to verify designs that contained both analog

and digital circuits. At the very highest levels of

abstraction, system designers have used C/C++ and Matlab to

model systems that would be implemented with analog and

digital circuits; but this approach usually doesn't try to

represent any implementation issues. At the next level down
in the hierarchy, designers have used Saber by Analogy and

similar tools to model mixed-signal systems. At the lowest

level of abstraction, designers have modeled all the analog

and digital circuits at the transistor level and used Spice-like

simulators, or reduced-complexity transistor-level simulators.

Designers are just beginning to use the VHDL and Verilog

AMS languages and this approach fits somewhere in the

middle compared to the above levels. The AMS extensions

allow a designer to use VHDL or Verilog to describe analog

circuits at different levels of abstraction, ranging from

behavioral to structural. The AMS description is usually then
translated to a netlist and simulated with a Spice-like

simulator.

Another approach offered by major CAD companies is to
provide a simulation environment that allows the user to

choose from different levels of abstraction for a given

simulation. Digital blocks are represented with an HDL and

simulated with an HDL simulator; analog blocks are

represented with transistors or an AMS HDL and simulated

with a Spice-like simulator. A software backplane allows the

HDL and Spice simulators to communicate via interprocess

communication.

Typically lower levels of abstraction translate to slower

simulation time. Consequently, simulating large mixed-signal

designs solely at the transistor level with a standard Spice-like
simulator may not be practical. The benefits of Spice

simulation tools are that they provide the most detailed level

of modeling and analysis including: DC, transient, small

signal AC, and zero’s/pole’s of filters. The costs of Spice

simulation are often long simulation times and tedious design

entry.

To overcome the analog and mixed –signal designing

issues a new approach in mixed-signal modeling and

simulation is required at the lowest level of integration. A

mixed signal level designing for digital modeling of the

analog circuitry is to be developed for the modeling of analog

circuitry in HDL environment.
Section II, proposed by the design. Section III explains the

floating point arithmetic representations. In section IV we

explained the complete ModelSim tool analysis and adding of

the user defined library with the resource library. Section V

and VI explains the case study and implementation

respectively. Finally, section VII and VIII explains the results

and conclusion.

II. PROPOSED DESIGN

Traditionally, if a system consists of both analog and

digital systems on the same platform called mixed-signal

systems, neither the analog tools nor the digital tools will

support mixed signal designs. These mixed signal designs are

used most-widely in DSP systems for audio and video

purposes. So to simulate such mixed signal designs, presently

the dedicated floating point arithmetic units are used in the

CAD tools like XILINX new version ISE tool with the latest

target devices like Vertex, Kintex etc. These dedicated

floating point arithmetic units need to buy from different

vendors. But, here we are proposing that after the extensive
study of the ModelSim tool flow, instead of buying the

I

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 54

dedicated floating pint arithmetic units from different

vendors, we have integrated the floating point arithmetic

features to the ModelSim tool in which, earlier we would

have simulated the fixed point numbers only. So that now the

upgraded ModelSim tool can be used to perform the complete

DSP operations like video and audio.
Since, the analog signal is decomposed or reconstructed

with the signal samples and those signal samples could be

defined with floating point values as shown in Fig. 1 and if

these floating point features of analog signals are added to the

resource library or standard library of any CAE tool, the

particular tool will be upgraded with both the analog and

digital features.

Fig. 1: Continuous wave signal with samples of 0.5, 0.7, 0.9, 1.0 (float

values)

III. FLOATING POINT NUMBER REPRESENTATION

There are several ways to represent real numbers on

computers. Fixed point places a radix point somewhere in the

middle of the digits, and is equivalent to using integers that

represent portions of some unit. For example, one might

represent 1/100ths of a unit; if you have four decimal digits,

you could represent 10.82, or 00.01. Another approach is to

use rational, and represent every number as the ratio of two

integers. Floating-point representation - the most common

solution - basically represents reals in scientific notation [5].

Scientific notation represents numbers as a base number and

an exponent.

For example, 123.456 could be represented as 1.23456 ×
102. In hexadecimal, the number 123.abc might be represented

as 1.23abc × 162. Floating-point solves a number of

representation problems. Fixed-point has a fixed window of

representation, which limits it from representing very large or

very small numbers. Also, fixed-point is prone to a loss of

precision when two large numbers are divided. Floating-point

[1], on the other hand, employs a sort of "sliding window" of

precision appropriate to the scale of the number. This allows

it to represent numbers from 1,000,000,000,000 to

0.0000000000000001 with ease.

A. IEEE 754 Floating Point Standard

IEEE 754 floating point standard [5] is the most common

representation today for real numbers on computers. The

IEEE (Institute of Electrical and Electronics Engineers) has

produced a Standard to define floating-point representation

and arithmetic. The standard brought out by the IEEE come to

be known as IEEE 754. The IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754) is the most widely used

standard for floating point computation, and is followed by
many CPU and FPU implementations [2].

The standard defines formats for representing floating-

point numbers including negative numbers and denormal

numbers special values i.e. infinities and NANs together with

a set of floating-point operations that operate on these values.

It also specifies four rounding modes which are round to zero,

round to nearest, round to infinity and round to even and five

exceptions including when the exceptions occur, and what

happens when they do occur. Dealing with fixed-point

arithmetic will limit the usability of a processor. If operations

on numbers with fractions (e.g., 10.2445), very small numbers

(e.g., 0.000004), or very large numbers (e.g., 42.243x105) are
required, then a different one representation is in order is the

floating-point arithmetic [4].

IV. UPGRADING the MODELSIM TOOL

A. General

 Since, ModelSim is the user friendly tool [11], in our work

we have chosen ModelSim tool, and upgraded the features.

ModelSim is a verification and simulation tool for VHDL,
Verilog, SystemVerilog, SystemC, and mixed-language

designs. Here, we are going to provide a brief conceptual

overview of the ModelSim simulation environment.

B. Simulation Flow in ModelSim

 The below Fig. 2 shows the basic steps for simulating a

design in ModelSim.

Creating the Working Library: In ModelSim, all designs
are compiled into a library. We start a new simulation in

ModelSim by creating a working library called "work".

"Work" is the library name used by the compiler as the default

destination for compiled design units.

Fig. 2: Basic Simulation Flow Diagram

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 55

Compiling the Design: Before we simulate a design, we

must first create a library and compile the source code into

that library as given below.

(i) Create a new directory and copy the design files for this

lesson into it. Start by creating a new directory for this

exercise.

(ii) Start ModelSim if necessary.

 Type vsim at a UNIX shell prompt or use the

ModelSim icon in Windows. Upon opening ModelSim

for the first time, we will see the Welcome to
ModelSim dialog. Click Close.

Select File > Change Directory and change to the

directory you created in step (i).

(iii) Create the working library.

 Select File > New > Library.This opens a dialog
where you specify physical and logical names for the

library. We can create a new library or map to an existing

library. We will be doing the former.

Type work in the Library Name field if it is not entered
automatically Click OK.

 ModelSim creates a directory called work and writes a

specially formatted file named_info into that directory. The

_info file must remain in the directory to distinguish it as a

ModelSim library. Do not edit the folder contents from your

operating system; all changes should be made from within

ModelSim. ModelSim also adds the library to the list in the

Workspace and records the library mapping for future

reference in the ModelSim initialization file (modelsim.ini).

When you pressed OK, several lines were printed to the Main
window Transcript pane:

vlib work

vmap work work

Copying C:\modeltech\win32/../modelsim.ini to

modelsim.ini

Modifying modelsim.ini

** Warning: Copied C:\modeltech\win32/../modelsim.ini to

modelsim.ini.

Updated modelsim.ini.

The first two lines are the command-line equivalent of the
menu commands you invoked. Many menu-driven functions

will echo their command-line equivalents in this fashion. The

other lines notify you that the mapping has been recorded in a

local ModelSim initialization file. After creating the working

library, compile the design units into it. The ModelSim library

format is compatible across all supported platforms. We can

simulate your design on any platform without having to

recompile your design. With the working library created, we

are ready to compile your source files. We can compile by

using the menus and dialogs of the graphic interface, as in the

Verilog or VHDL.

V. CASE STUDY

The DWT represents a good example of the complexity

that today’s mixed signal integrated circuits present to the

simulation tools. This complexity comes from the variety of

functional features that must be supported by the design of

Input FIFO, Buffer, High Pass, Low Pass Filters called Filter

Bank, Coefficient Register, Controller, Energy Calculator,

Energy RAM, Sample RAM. Fig. 3 shows a simplified block

diagram of the chip. The input of speech signal will be

converted as speech samples using MATLAB. These
MATLAB coefficients which will be in the form of floating

point, given as the input to the I/P FIFO. These floating point

MATLAB coefficients will be processed using the IEEE-754

format.

Fig. 3: Proposed system for DWT decomposer module

Fig. 4: Proposed system for DWT reconstructor module

 Fig. 4 shows the proposed system for DWT reconstructor

module. The signal applying at the input will be decomposed

by the DWT decomposer and reconstructed by the

reconstructor module and hence original signal could get at
the output of the reconstructor module.

VI. IMPLEMENTATION

The proposed system is realized using VHDL language for

it’s functional definition. The HDL modeling is carried out in

top-down approach with user defined package support for

floating point operation and structural modeling for recursive

implementation of the filter bank logic. For the realization a
package is defined with user defined record data type as:

type real_single is

record

sign : std_logic;

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 56

exp: std_logic_vector(3 downto 0);

mantissa: std_logic_vector(10 downto 0);

end record;

The floating notation is implemented using 16 bit IEEE-

754 standards as presented in below Fig. 6.

Sign. (1) Exp. (4) Mantissa (11)

Fig. 6: 16 bit IEEE-754 standard

The floating-point addition, multiplication and shifting

operation are implemented as procedures in the user defined
package and are repeatedly called in the implementation for

recursive operation. The procedures are defined as:

procedure shifftl (arg1: std_logic_vector;arg2: integer;arg3

:out std_logic_vector);

procedure shifftr (a:in std_logic_vector; b:in integer;result:

out std_logic_vector);

procedure addfp (op1,op2: in real_single;op3: out

real_single) ;

procedure fpmult (op1,op2: in real_single;op3: out

real_single) ;

For performing the convolution operation, filter

coefficients are defined as constant in this package and are

called by name in filter implementation.

constant lpcof0: real_single:=('1',"0100","00001001000");

constant lpcof1: real_single:=('0',"0100","11001010111");

constant lpcof2:real_single:=('0',"0110","10101100010");

constant lpcof3:real_single:= ('0',"0101","11101110100");

constant hpcof0: real_single:= ('1',"0101","11101110100");

constant hpcof1:real_single:=('0',"0110","10101100010");

constant hpcof2:real_single:=('1',"0100","11001010111");
constant hpcof3:real_single:=('1',"0100","00001001000");

Using the above definitions the filters are designed for

high pass and low pass operation. The recursive

implementation is defined as:

for k in 1 downto 0 loop

old(k):=shift(k);

fpmult(old(k)(0),hpf(k+1),pro(k)(0));

proper(j,k):=pro(k)(0);

addfp(acc(k)(0),pro(k)(0),acc(k)(0));
acer(j,k):=acc(k)(0);

shift(k+1):=shift(k);

end loop;

For the evaluation of the implemented design the test

vectors are passed through the test bench generated from

Matlab tool. The continuous output is discretized using

Matlab tool where each coefficient is converted to 16-bit

floating notation and passed to the test bench for HDL

interface. The coefficients obtained from the filter bank after

convolution is then compared with the results obtained from

the Matlab decomposition for accuracy evaluation.

library ieee;

use work.math_pack1.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_1164.all;

entity topmodule_wb is
end topmodule_wb;

architecture TB_ARCHITECTURE of topmodule_wb is

component topmodule

port (

clk : in std_logic;

rst : in std_logic;

start : in std_logic;

read1 : in std_logic);

end component;

signal STIM_clk : std_logic;

signal TMP_clk : std_logic;

signal STIM_rst : std_logic;
signal STIM_start : std_logic;

signal STIM_read1 : std_logic;

signal WPL : WAVES_PORT_LIST;

signal TAG : WAVES_TAG;

signal ERR_STATUS: STD_LOGIC:='L';

begin

CLOCK_GEN_FOR_clk: process

begin

if END_SIM = FALSE then

TMP_clk <= '0';

wait for 50 ns;
else

wait;

end if;

if END_SIM = FALSE then

TMP_clk <= '1';

wait for 50 ns;

else

wait;

end if;

end process;

ASSIGN_STIM_clk: STIM_clk <= TMP_clk;

ASSIGN_STIM_rst: STIM_rst <=
WPL.SIGNALS(TEST_PINS'pos(rst)+1);

ASSIGN_STIM_start: STIM_start <=

WPL.SIGNALS(TEST_PINS'pos(start)+1);

UUT: topmodule

port map(=> ,

clk => STIM_clk,

rst => STIM_rst,

start => STIM_start,

=> ,

=> ,

read1 => STIM_read1,
=>);

end TB_ARCHITECTURE;

end TESTBENCH_FOR_topmodule;

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 57

VII. RESULTS

A. Simulation Results

For the evaluation of the suggested design methodology an

analog signal is taken and processed, the observations

obtained are as illustrated in below Fig. 7.

Fig. 7: Test signal sample for observation2

Samples Considered

0------------------- - “0000000000000000”

-3.0518e-05--------“1000110000110101”

-3.0518e-05-------“1000110000110101”

0------------------ - “0000000000000000”

-6.1035e-05-------“1000010000110110”

0------------------ - “0000000000000000”

-6.1035e-05-------“1000010000110110”
-7.1553e-05-------“1000011001001111”

-6.1035e-05-------“1000010000110110”

-6.1035e-05-------“1000010000110110”

-7.1553e-05-------“1000011001001111”

-7.1553e-05-------“1000011001001111”

-7.1553e-05-------“1000011001001111”

0----------------- - “0000000000000000”

-7.1553e-05-------“1000011001001111”

-6.1035e-05------“1000010000110110”

-7.1553e-05-------“1000011001001111”

-3.0518e-05------“1000110000110101”

-6.1035e-05-------“1000010000110110”
-3.0518e-05------“1000110000110101”

-6.1035e-05-------“1000010000110110”

 0---------------- “00000000000000000”

The above floating point numbers corresponding plot can

be shown in Fig. 8.

Fig. 8: Plot for the considered input signal sample or the samples sent at the

input of the decomposer module

B. Simulation of proposed design Using ModelSimP.E10.1b

Fig. 9: Simulation of input sample float value

The above simulation result shows for -6.1035e-05. It’s

equivalent floating point number is 1 0000 10000110110. It

is one of the floating point sample values from table.1. It has

the sign bit: 1, exponential: 0000 and mantissa: 10000110110.

For simplicity we have shown only one sample value. It has

been sent as input at the input of Fig. 5. The same output got

at the output of Fig. 5. In Fig. 9 the last value of the first row

shows that 1 0000 10000110110 which is the input of

decomposer shown in Fig. 5.
The yellow box of Fig. 9 shows that

sign:1,exp:0000,mantissa: 10000110110 which is the output

of reconstructor shown in Fig. 6. Hence, it is observed that

both input and outputs are same.

C. Comparison of the input and output results

Fig. 10 shows the output of the reconstructer module for

all sample values.
If we observe Fig. 8 and Fig. 10, the samples sent at the

input of the decomposer module and the samples received at

the output of the reconstructer module are same.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 58

Fig. 10: The samples received at the output of the reconstructer module

D. Synthesis of proposed design using Xilinx-ISE13.4

Fig. 11: Complete internal architecture of DWT

Fig. 11 shows the complete internal architecture of DWT.

It has been synthesized using Xilinx-ISE13.4

Fig. 12: Internal architecture between fifo1 and fifo2

Fig. 12 shows that internal architecture between fifo1 and

fifo2. For simplicity we are showing only some of the

synthesized diagrams.

Fig. 13: Top module of DWT

Fig. 13 shows the Top module of DWT. It consists of

different inputs and outputs of the Discrete Wavelet

Transform.

VIII. CONCLUSION

 In this work, we have added the analog features in the

form of floating point notation, defined in the working library

to the resource library of the ModelSim PE 10.1b tool

successfully. Using this novel tool, analog mixed signal

design i.e., DWT has been simulated. It has been used IEEE

754 standard based floating point representation. The design

algorithms have been coded in VHDL [7]. Actually, the

ModelSim PE 10.1b tool is defined for the digital design

simulation. But, as we have provided the analog feature
feasibility in the form of floating point arithmetic, the

ModelSim PE 10.1b tool has been customized; hence the

single tool could be used for analog-mixed signal designs.

REFERENCES

[1] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic” pp. 5-48 in ACM Computing
Surveys vol. 23-1 (1991).

[2] Charles Farnum, “Compiler Support for Floating-Point
Computation” Software Practices and Experience, pp. 701-9
vol. 18, July 1988.

[3] M. Leeser, X. Wang, “ Variable Precision Floating Point
Division and Square Root”, Department of Electrical and
Computer Engineering Northeastern University.

[4] Taek-Jun Kwon, Jeff Sondeen, Jeff Draper USC Information
Sciences Institute Design Trade-Offs institute “Floating-Point
Unit Implementation for Embedded and Processing-In-
Memory Systems” 4676 Admiralty Way Marina del Rey, CA
90292 U.S.A.

[5] IEEE computer society: IEEE Standard 754 for Binary
Floating-Point Arithmetic, 1985.

[6] Hierarchical VHDL Libraries for DSP ASIC Design, John
McCanny’, Douglas Ridge, Yi Hu, Jill Hunter, 1997 IEEE,

[7] J.Bhaskar,”AVHDL primer” Pearson education,2004.
[8] C. Burus, et al. Introduction to Wavelets and Wavelet

Transformation A Primer. Prentice Hall, 1998.
[9] ASIC Design Methodology with On-Demand Library

Generation, Hidetoshi Onodera, Masanori Hashimoto, and

Tetsutaro Hashimoto Department of Communications and
Computer Engineering, Kyoto University, 2001 Symposium
on VLSl Circuits Digest of Technical Papers

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 59

[10] Development of User-defined Block Library for Active-
Disturbance-Rejection-Control, Jiang Ping, Bingshu Wang,
2010 IEEE

[11] Modelsim PE SE 10.1b Performance Guidelines, Model
Technology, December 3rd, 2010, User’s manual,version

10.1b, Mentor Graphics Corporation.

[12] Fundamentals of digital logic with vhdl design 2e Stephen
Brown, Zvonko Vranesic.pdf

R. Prakash Rao, received his M.Tech degree from

College of Engineering Andhra University, Vizag,

India and B.Tech degree from Siddardha College of

Engineering, Nagarjuna University, Guntur, India.

Presently he is working as Professor and HOD in St.

Peter’s Engineering College, Hyderabad. He published

08 papers in various National and International

Journals and Conferences. He got best faculty award

during 2009-2010 in ASTRA, Hyderabad. He has guided 02 M.Tech projects

and about 25 B.Tech projects in various levels.

Dr. B.K. Madhavi, received Ph.D from JNTU,

Hyderabad. She completed ME from BITS-PILANI in

the specialization of Microelectronics. She published

24 research papers in various National and

International Journals and Conferences. Presently she

is guiding 10 PhD Students and guided several BTech

and MTech Projects. She is also being reviewed

research papers for IETE. She participated in several

workshops, summer and winter schools, National, International conferences

and also organized several National level workshops, student paper contests,

and seminars etc.

http://www.filecrop.com/41628240/index.html
http://www.filecrop.com/41628240/index.html

