
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 7

Realization of Interoperability & Portability Among

Open Clouds by using Agent’s Mobility &

Intelligence

 Rabia Khan
1
 and Amjad Mehmood

2

1,2Institute of Information Technology, KUST, Indus Highway, Off Jarma, Kohat, KPK, Pakistan
1rabia.pk123@gmail.com, 2amjadiit_kust@yahoo.com

Abstract– Cloud Computing has become most demanding utility

or service for the current era, because of its high computing

power, performance, cheapness, accessibility, scalability, and

availability. But still it is in infancy stage, and has some pitfalls

which are due to non-existence of standards. Interoperability

and portability are the two among the major issues in Cloud

Computing. Authors have pointed out these issues and how

actually interoperability and portability issues would be

encountered? Authors propose architecture to address these two

issues with the collaboration of next emerging technology i.e.,

agents and XMPP protocol. As there is an architecture proposed

before using agents but in this paper first time both features of

an agent i.e. intelligence and mobility are used in some particular

way. Mobility is for movement among different clouds, as agents

are interoperable by default as per FIPA (Foundation of

Intelligent Physical Agent), and intelligence is to take the wise

decision by keeping number of attributes in the database i.e.

workload per service on each machine, distance between the

clouds and services available on each cloud to fix the above cited

problems.

Keywords– Interoperability, Portability, Open Clouds, FIPA Agents
and XMPP

I. INTRODUCTION

loud computing is the integration of many IT

technologies like grid computing, cluster computing,

utility computing, web 2.0, SOA and much more thus

precise definition for cloud computing is harder to state.

Cloud computing can be thought of as an infrastructure that

provides storage, processing and applications as service.

These services can be accessed over the internet by using
some standard browser. Cloud computing is three layered

service architecture [5], [8]:

SaaS: Applications delivered as service on top SaaS layer

consumed directly by the user. SaaS provides fully functional

software over the internet to user instead of letting him install

software on his computer.

PaaS: Middleware provides runtime environment for

application development to be run on infrastructure provided

by the provider.

IaaS: Distributed resources connected via internet provide
infrastructure for cloud services e.g. CPU, database, storage

etc.

Cloud computing provides many advantages [5] listed as:

i). Customer demands services according to his/her needs
and they are provisioned as per need

ii). Resources are added or removed as per demands

iii). Pay-as-you-go is the most important feature of cloud

computing, user has to pay only for the services he uses

iv). Cloud computing completely is based on self service

concept. Customer or service provider is responsible for

the services he uses or provides, no administrator is

available to configure the resources or

provision/deprovision the resources.

v). Cloud is a collection of infinite resources; user can

acquire resources according to need and then release
them back to the pool after use.

vi). User need not to invest on any infrastructure, does not

need to purchase any hardware, this reduces investment

cost in hardware etc and many more as one can think of.

There are some concerns about cloud computing- as

discussed by many researchers-which has to be addressed in

order to make cloud computing concept spread world wide

successfully. Concerns include [1], [5], [8]:

a). A service provided by one cloud may not follow the same

rules on another cloud which locks the service in a single

cloud and user has to follow different rules and

regulations if he wants to use the same service of another
cloud by abandoning previous cloud service thus

interoperability among clouds is required which is yet to

be established.

b). Huge amount of data upload on cloud may be difficult

due to heavy use and shared nature of cloud.

c): Many CCSP (Cloud Computing Service Providers)

promise to provide infinite scalability for customer but

due to the fact that millions of users are now migrating to

cloud computing so to cope up with user demands such

promises are not fulfilled.

d). Since many systems have been crashed on cloud like
Amazon so using only one CCSP services can result in a

drawback as when a shutdown event happens on a cloud,

the service disappears and user cannot find that service.

e). Because of absence of portability feature in cloud it is

impossible for a user to move his application from one

cloud to another; as a result user is locked in to a certain

CCSP.

f). Applications can’t scale from one CCSP to another due to

lack of interoperability standards.

C

mailto:rabia.pk123@gmail.com

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 8

g). As it’s the advantage of cloud computing user is free

from investing in large hardware and expensive software,

he just needs to put request and similar services and

facilities will be provided to him through cloud. Same

goes to service providers; he has to keep an eye on heavy

demands by users but it all comes by cost to provider.

In this paper authors focused on interoperability and

portability issues by using XMPP protocol: for discovering

the nearby clouds, and providing same information to the

agents: which is next state-of-art technology. It has features

like mobility and intelligence: mobility is for interoperability

and portability among the open clouds, intelligence for taking
wise decision by calculating the work load on each MAP’s

(mobile agent place) virtual machine(s),services available on

each cloud , estimating the distance between the clouds: by

counting no of hops, and place the result in database. All

those computations would not be done at runtime, in order to

increase the performance of the cloud, however those

parameters manipulation would be preprocessed after week or

month and results would be stored in database. So after

storage, when agent would be requested for the service, cloud

would be more intelligent than before and would search its

database, find the appropriate result and guide the operation
of interoperability and portability accordingly as per

parameters’ conditions specified in paper.

Rest of the paper is organized as follows: Section II

describes the relevant work done to address portability and

interoperability among clouds. Section III shows the

architecture of this paper. Section IV shows the mathematical

analysis of this work. Section V is a case study and Section

VI is conclusion.

II. RELEVANT WORK

Many researchers address portability and interoperability

and proposed solutions. Zehua Zhang and Xuejie Zhang

proposed MABOCCF (Mobile Agent Based Open Cloud

Computing Federation) [1]. Their proposed architecture

works as follows: User task is encapsulated in a mobile agent

which runs on MAP (Mobile Agent Place). Mobile agent

keeps an eye on resources of MAP and decides when to leave
it to migrate to another MAP either on same CCSP or another

if resources on particular MAP become scarce.

We take similar approach like MABOCCF but there are

few differences:

1) MABOCCF was quite abstract and we propose all minute

details.

2) MABOCCF uses only agent’s mobility while we are using

mobility plus intelligence

3) We achieve realization by using XMPP

4) MABOXFF proposed that one VM may have multiple

MAPs while we propose that multiple VMs having same
service providing features are joint together to work

under one MAP that is named by the service it provides

e.g., HTTP MAP etc. Here MAP serves the same purpose

as hypervisor.

A V. Parameswaran and Asheesh Chaddha in their article

Cloud Interoperability and Standardization [2] proposed.

Unified cloud interface/Cloud broker and Enterprise Cloud

Orchestration Platform /Orchestration layer.

David Bernstein et al. in [3] proposed protocols based

interoperability among clouds.

Cloud Computing Region 2

 USER

 TS Database

 Physical Machine

 VM

VM

 VM

 VM
 VM

VM

 XMPP

TS: Task Manager

VM: Virtual Machine

XMPP: Extendible Messaging and

Presence Protocol

MAP: Mobile Agent Place

Agent

XMPP

Figure 1: Architecture of how

realization of interoperability and

portability will be accomplished

 MAP MAP

Cloud Computing Region 1

Fig. 1: Architecture of how realization of interoperability and portability will be accomplished

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 9

Fig. 2: Dataflow Diagram

III. ARCHITECTURE

We will take similar approach like MABOCCF [1]. User

task is encapsulated in mobile and intelligent agents. Agents

get registered to MAP (Mobile Agent Place) and runs there.

Multiple Virtual Machines providing similar services are
grouped together and a unified MAP is installed over them.

Every MAP is named by the services underlying VMs provide

e.g. HTTP MAP, SMTP MAP etc. Agent interacts with

appropriate MAP keeping in view user requirements. Agent

monitors resource condition on MAP on which it is running

and when it finds resource scarcity it migrates to another

MAP on another cloud having similar functionality ensuring

portability. The architecture has some special components to

integrate interoperability among different clouds. If an agent
does not find any suitable MAP for its requirements, it has to

move to another cloud. XMPP (Extensible Messaging and

Presence Protocol) is a protocol used here which helps in

discovery of clouds and services offered by clouds.

XMPP is a set of open XML technologies for presence and

real time communication. XMPP interacts with agent to

provide information about nearby clouds and their respective

services. Agent saves those updates in database for future

references. TS (Task Manager) get information about nearby

clouds from database and accordingly update itself about the

resources condition in nearby clouds. Each TS has more than

one MAP and those MAPs are responsible for timely
informing TS about the resources residing in them and the

percentage of MAP busy for particular service thus TS is used

for resource indexing. MAP also updates TS about agents

who are registered there and agents who left MAP. TS is also

helpful in authentication, security, billing, disaster

management and fault tolerance. The architecture of this

scenario is shown in Fig 1.

A. Working Mechanism

Agent requests XMPP server to investigate nearby clouds

and their respective services. XMPP contacts other XMPP

servers residing on nearby clouds and gets update and returns

that information to the agent. Agent saves the information in

database for the TS to update its status and for future

references. Agent provokes XMPP time to time to get recent

updates about nearby clouds. Upon receiving information

from XMPP, agent would broadcast a message to nearby

cloud having required services. Agents residing on MAP of

different cloud would entertain the query by sending required

information back.
Required information will include number of VMs that are

working together to perform required service, percentage of

service load on cloud and the appropriate MAP who can

facilitate the requested service. Database entries are shown in

Table 1, Table 2 and Table 3. When a user task has been

arrived, two cases may result:

Case 1: Agent would search the database to see which
cloud could better satisfy user request and a match is found.

Case 2: Agent search for appropriate match in database

but could not find a match then it has to activate XMPP for

updates to be stored in database.
Agent selects appropriate cloud matching user

requirements and moves there. If more than one cloud has the

required services then agent has to select the one having less

workload of required service.

In a situation when two clouds with same workload of

required service, the agent would select the cloud on the basis

of minimum number of hops it has to travel and hop

information is also stored in database.

Results are returned to the user either directly by agent or

through TS. This mechanism is shown in Fig. 3.

Cloud Service
of

HOPs
MAP % load

of

VMs

B HTTP 30 HTTP-MAP 31.08% 03

C HTTP 20 HTTP-MAP 90% 02

Service

Cloud

HTTP B

HTTP C

Cloud
MAP(specified

Service)
VMs (in order)

B HTTP-MAP 1,3,6

C HTTP-MAP 2,5

User

User

User

Agent XMPP

 MAP of particular requested
service (either on same cloud or

different)

Task Manager

User request

Encapsulated in
Agent

Request

Response

Search

Store

Broadcasts message

Response

Updates TS
Store

XMPP Table: 1

Agent Table: 2

XMPP Table: 1

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 10

Data flow Diagram of working mechanism is shown in

Fig. 2. Four cases have been considered while constructing

this architecture which are as follows:

Case I: Task delegation on single MAP among 2 agents

Case II: Migration and delegation of task among 2 agents
from one MAP to another on same cloud.

Case III: Migration and delegation of task among 2 agents
from one MAP to another on different clouds.

Case IV: Assignment of same task to more than 1 agent

Case I, II and III could be handled using technique given
in [4] which shows two approaches for handling such issues.

One Phase Approach: An agent delegates its task to other
agent; task is then decomposed into fragments (subtasks)

which are then further delegated to other agents until the task

is completed.

Two Phase Approach: Agents are first asked if they are
capable of executing the task. If so then task is divided into

fragments (subtasks) and handed over to agents who have

approved task execution. Those agents will in turn request

other agents for execution of subtasks and if request accepted,

subtasks are handed over to them. This process continues until

task is completed.

Case IV will arise race condition among agents. Agents

will compete each other for resources needed to complete the

task successfully.

IV. MATHEMATICAL ANALYSIS

For the purpose of this paper, we need to find out the

percentage of services every MAP is to compute and provide

this information to TS which then saves it in database.

Total CPU Time = Time CPU busy % * Task CPU burst [1] *

number of processors ------------------------ (1)

([1] CPU requirement by a particular task as calculated by operating system)

% Time CPU busy can be calculated by the formula:

% Time CPU wait = [(Online Time – Wait Time /Online

Time] * 100 ----------------------------------- (2)

Now to calculate the time captured by a particular task:

Captured CPU Time =Total CPU Time – Time CPU Busy
--- (3)

Now to calculate service % workload on a particular

MAP:

Service CPU % = (Captured CPU Time / task CPU burst) *

100 …………………….……………… (4)

V. CASE STUDY

Let suppose we have two similar requests for HTTP
service. Suppose two clouds B and C provide HTTP service.

Which cloud must an agent select to forward service request?

INTERNET

Cloud A

Cloud C

Cloud B

MAP (Mobile Agent Place)

VM (Virtual Machine)

Database

Agent

XMPP Server
TS (Task Manager)

User

Fig. 3: Showing the scenario interoperability and portability by using agent’s mobility and intelligence

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 11

Agent would first check database to dig out the required

matching criteria. Criteria would be to select a cloud having

less service CPU percentage that means that cloud would be

having fewer loads for that particular service so a user request

could be fulfilled early if sent to that cloud. So suppose Cloud

B has single processor and CPU burst for the task is 15
seconds, using above equations to find out service percentage

on cloud B.

Using equation (2):

Let suppose system is online from 15 seconds and waiting for

task for 10 seconds, then % CPU busy becomes:

% CPU wait = [(15 – 10)/15] * 100

% CPU wait = 33.3%

Putting values in equations (1), (3) and (4)

Total CPU Time = 33.3% * 15 * 1

Total CPU time = 4.995 seconds

 Captured CPU time = 4.995 – 0.333

Captured CPU time = 4.662 seconds

Service CPU % = (4.662 * 100) / 15

HTTP CPU % on cloud B= 31.08%

Now coming to cloud C. Let suppose it has a dual core

system.

Let suppose the system is online from 15 seconds and waiting

for task for 8 seconds.

Using equation (2):

CPU wait % = [(15 – 8) / 15] * 100

CPU wait % = 46.6667%

Putting values in equation (1), (3) and (4)

Total CPU time = 46.6667 % * 15 * 2

Total CPU time = 14.0 seconds

Captured CPU time = 14.0 – 0.466667

Captured CPU time = 13.5 seconds

HTTP CPU % = (13.5 * 100) / 15

HTTP CPU % on cloud C= 90%

Results show that HTTP service on cloud C is heavily

loaded. So if an HTTP request is sent to cloud C, it would

take too much time to be serviced, that’s why better option is
cloud B where HTTP workload less then cloud C and it will

service the request faster.

Option is cloud B where HTTP workload less then cloud C

and it will service the request faster.

VI. CONCLUSION

Cloud computing is yet in its infancy stage and no such

standard exists which could set rules or privileges for cloud
computing. Researchers, academia and organizations need to

work collectively and set open standards acceptable to all.

This effort is a step towards this milestone. Interoperability

and portability could be achieved only if we adopt open

mechanisms like discussed in this paper.

REFERENCES

[1]. Zehua Zhang and Xuejie Zhang“Realization of Open Cloud
Computing Federation Based on Mobile Agent”, IEEE

International Conference on Intelligent Computing and
Intelligent Systems, Publisher: IEEE, 2009, pp: 642- 646

[2]. A. V. Parameswaran and Asheesh Chaddha “Cloud
Interoperability and Standardization” SET Labs Briefings
VOL 7 NO 7, 2009.

[3]. David Bernstein, Erik Ludvigson, Krisna Sankar, Steve
Diamond and Monique Morrow “Blueprint for the Intercloud
Protocols and Formats for Cloud Computing Interoperability”,
The Fourth International Conference on Internet and Web
Applications and Services, ICIW 2009, IEEE Computer
Society. 2009, pp. 328–336

[4]. António Luís Lopes, Luís Miguel Botelho “Task
Decomposition Coordinating Unstructured Multi Agent

Systems”, published in Proceedings of the International
Conference on Complex, Intelligent and Software Intensive
Systems, 2007, pp. 209- 214,.

[5]. Karl Scott “The Basics of Cloud Computing” White Paper
November 2010, akaili systems inc.

[6]. Shufen Zhang, Shuai Zhang, Xuebin Chen and Shangzhuo Wu
“Analysis and Research of Cloud Computing
System Instance” 2010 Second International Conference on

Future Networks, China, 2010, pp 88-92
[7]. Shuai Zhang, Shufen Zhang, Xuebin Chen and Xiuzhen Huo

“Cloud Computing Research and Development Trend”
2010 Second International Conference on Future Networks,
China, 2010, pp 93-97

[8]. H. Gilbert Miller and John Veiga “Cloud Computing: Will
Commodity Services Benefit Users Log Term? ” P u
b l i s h e d by t h e IEEE Comp u t e r S o c i e t y, 2009 (vol.

11 no. 6), pp. 57-59.
[9]. Rich Maggiani “Cloud Computing Is Changing How We

Communicate”, 2009 IEEE International Professional
Communication Conference USA, 2009, pp 1-4

[10]. G. Cabri, L. Leonardi, F. Zambonelli “MOBILE AGENT
TECHNOLOGY: CURRENT TRENDS AND
PERSPECTIVES”http://www.agentgroup.unimo.it/MOON/pa
pers/pdf/aic,http://sirio.dsi.unimo.it/MOON/papers/aica98.ps.g
z.

[11]. Sergiy Nikitin, Vagan Terziyan and Michal Nagy
“MASTERING INTELLIGENT CLOUDS Engineering
Intelligent Data Processing Services in the Cloud”, ICINCO
2010, Proceedings of the 7th International Conference on
Informatics in Control, Automation and Robotics, Volume 1,
Portugal, 2010, pp 174-181.

[12]. “Open Cloud Manifesto,”
http://www.opencloudmanifesto.org/Openn%20Cloud%20Ma

nifesto. pdf.
[13]. “Above the Clouds: A Berkeley View of Cloud Computing,”

Http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html.

[14]. “Interoperable Clouds”, A White Paper from the Open Cloud
Standards Incubator, Version 1.0.0, Status: DMTF
Informational, Publication Date: 2009-11-11, Document
Number: DSP-ISO101

[15]. Liang-Jie Zhang and Qun Zhou “CCOA: Cloud Computing
Open Architecture”, 2009 IEEE International Conference on
Web Services, 2009, pp 607 – 616

[16]. Craig A. Lee Open Grid Forum and the Aerospace
Corporation “A Perspective on Scientific Cloud Computing”,
HPDC’10 proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
2010, pp 451-459

[17]. www.fipa.org visited on July 12,2011
[18]. www.xmpp.org visited on July 22, 2011

http://www.opencloudmanifesto.org/
http://www.fipa.org/
http://www.xmpp.org/

