
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 42

A Comparitive Study of Indexing Techniques in Data

Warehouse

Neha Sharma
1
 and Arvind Panwar

2

1,2Northern India Engineering College, Delhi, India

Abstract— The need for strategic information is escalating day by

day and that can be fulfilled efficiently with the help of data

warehouse indexing techniques. For this, one needs to maintain

the data warehouse structure well. Data-warehouse has a

broader scale and is completely equipped with the decision

making process strategies. Since data in the data warehouse is

enormous, so most of the queries in such a data warehouse will

be complex and time taking too. Therefore, to speedup the

processing time of these queries, indexing is used. At present,

there are a number of indexing techniques available in the

market. But according to the cardinality, size, processing speed,

flexibility, and ease to make etc. different indexing techniques

are visualized. This paper provides an assessment of different

indexing techniques of data warehouse indexing depending upon

above defined criteria’s.

Keywords— Data Warehouse, Techniques and Indexing

I. INTRODUCTION

n today‟s scenario, each and every company needs
strategical information for the purpose of business analysis

to look at the prevailing information crisis. This

information needs to be gathered as quickly as possible for the

business analysis. Hence, to speedup the query processing in

data warehousing environment, indexing is used and this

paper focuses on explanation of different indexing techniques

and their use. It also emphasis on use of different indexing

techniques in different scenarios and it presents a comparison

between all of them.

 Data-warehouse is a subject oriented, integrated, non-

volatile and time variant collection of data in support of

management‟s decision [1], [2]. Data in the data warehouse is
a compilation of information gathered from Online

Transaction Processing (OLTP). Slight modifications are

done on traditional OLTP systems and the new thing named

Online Analytical Processing (OLAP) comes into the picture.

Data in the data warehouse is presented in the form of

multidimensional model. OLAP tools facilitate users to

scrutinize multidimensional data from numerous perspectives

by allowing query the system iteratively to take faster and

better decisions. Generally, these queries take long time to

execute because of number of join operations on number of

records.
 These complex queries will include complex functions such

as “group by”, “having”, and “order by” and this will result in

number of days to compute result of these queries. Queries

defined on data warehouses are generally analytical and

multifarious, which uses a number of join operations. Join

operations are very costly, particularly when run on very large

data volumes. A majority of requests for information from a

data warehouse involve dynamic ad hoc queries users can ask

any question at any time for any reason against the base table

in a data warehouse. The ability to answer these queries
quickly is a critical issue in the data warehouse environment

[3], [4].

To overcome this problem of slow query processing and to

improve response time, the concept of indexing came. Data

warehouse reports needs quick response. Hence, many

indexing techniques have been created to accomplish this

target. So indexing enhances the ability to extract data to

answer complex and ad hoc queries speedily. A database

index is a data structure that improves the speed of data

retrieval operations on a database table at the cost of slower

writes and increased storage space. Indexes can be created
using one or more columns of a database table, providing the

basis for both rapid random lookups and efficient access of

ordered records [5].

Different types of indexing techniques explained in this

paper are listed below:

 B-Tree index,

 Pure Bitmap index,

 Encoded bitmap index,

 Bitmap Join Index, and

 Projection index.
The above named indexing techniques will be explained in

detail in the section named Indexing Structure and

comparison of these techniques will be presented in the

section Indexing Comparative study of indexing techniques.

II. LITERATURE REVIEW

Vanichayobon et al provides an evaluation of indexing

techniques being studied/used in both academic research and

industrial applications [6]. In addition, it also identifies the

factors that need to be considered when one wants to build a

proper index on base data. The objectives of this paper are to

identify factors that need to be considered in order to select a

proper indexing technique for data warehouse applications,

and to evaluate these indexing techniques.

 Maher et al., describes the Simple Bitmap Index technique

and its related techniques such as Bit-Sliced Index, Range-

Based Index and Encoded Bitmap Index [7] and another
Indexing technique Projection Index. It also compares those

I

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 43

Indexes techniques concerning many parameters. Finally, it

presents a conclusion and future enhancement of the Bitmap

Indexes. The main focus of this paper is bitmap indexing. It

emphasizes on bitmap indexing types, advantages,

disadvantages, application and then at last it shows how

bitmap indexing is different from other indexing techniques
by a simple comparison between al of them.

Ghanjaoui et al., investigate the usability and performance

of the UB-Tree (Universal B-Tree) as one of these

multidimensional access methods [8]. The UB-Tree is a very

promising multidimensional index, which has shown

superiority over traditional access methods in different

scenarios, especially in OLAP applications. It is being shown

that the advantages of the UB-Tree in performance and cache

requirements are Considerable. In addition, the UB-Tree can

be integrated into existing database systems relatively easy, as

most of its operations are based on the B-Tree. A real

example is the integration of the UB-Treeinto the commercial
Database Management System (DBMS) TransBase. This

project was awarded the 2001 IT-Prize by EUROCASE and

the European commission.

Weigel reviews fourteen approaches to indexing semi

structured data, ranging from most simple look-up tables as

used in traditional Information Retrieval to sophisticated

graph-based index structures for combined structure and

content queries [9]. Each approach is described in detail,

including illustrated examples. For comparison, they

emphasize differences in the employed data structures, the

document types supported, the kind of information to be
retrieved (specified in terms of look-up input and output), the

storage and update behavior, and performance results.

Moreover, specific features such as structural node

identification, path templates, and internal navigation are

examined. The major preliminaries from Information

Retrieval, structured documents, and indexing in general are

discussed in three introductory chapters. They include generic

retrieval system architecture and further data structures such

as schema graphs, signatures, filters, and various Tries.

Azefack et al present an automatic, dynamic index

selection method for data warehouses that is based on

incremental frequent item set mining from a given query
workload [10]. The main advantage of this approach is that it

helps update the set of selected indexes when workload

evolves instead of recreating it from scratch. Preliminary

experimental results illustrate the efficiency of this approach,

both in terms of performance enhancement and overhead.

III. THE INDEXING STRUCTURE

Indexes are basically database objects, which are used to
speed up the data retrieval from huge databases. Indexing is

an old technique and it exists in relational database from past

so many years but it‟s not efficient on large number of data

records as present in data warehouse, which is used for

strategic analysis.

A. Bitmap Indexing

Bitmap indexes are principally meant for data

warehousing applications where there‟s a large amounts of

data and ad hoc queries based on that huge data. In a bitmap

index, a bitmap is used as a key value to replace list of row

ids. Each bit of the bitmap represents a possible row id, and if

the bit is set („1‟), it means the row with the corresponding

row id contains the key value. A mapping function is used to

convert the bit position to an actual row id. As a result, the
bitmap index works similar to a regular index.

Following are major advantages of using Bitmap Index:

 Reduced response time for large classes of ad hoc

queries

 Reduced storage requirements compared to other

indexing techniques

 Dramatic performance gains even on hardware with a
relatively small number of CPUs or a small amount of

memory

 Efficient maintenance during parallel DML and loads

1) Pure Bitmap Index

Pure Bitmap Index was first introduced and implemented

in the Model 204 DBMS. It consists of a collect of bitmap

vectors each of which is created to represent each distinct

value of the indexed column. A bit i in a bitmap vector,

representing value x, is set to 1 if the record i in the indexed

table contains x.

Following are merits of using pure Bitmap Index:

 It is well suited for low cardinality columns.

 It utilizes bitwise operations.

 The indexes can be combined before fetching raw data.

 It uses low space; it works well with parallel machine.

 It is easy to build.

 It performs efficiently with columns involving scalar

functions (e.g., COUNT).

 It is easy to add new indexed value.

 It is suitable for OLAP.

Following are demerits of using pure Bitmap Index:

 It performs inefficiently with high cardinality data.

 It is very expensive when we update index column. The
whole bitmap segment of the updated row is locked so

the other row can not be updated until the lock is

released.

 It does not handle spare data well.

2) Encoded Bitmap Index

An Encoded Bitmap Index on a column A of a table T

consists of a set of bitmap vectors, a lookup table, and a set of

retrieval Boolean functions. Each distinct value of a column A

is encoded using a number of bits each of which is stored in a

bitmap vector. The lookup table stores the mapping between

A and its encoded representation. IBM implements this index

in DB2.
Comparing with the Pure Bitmap Index, the Encoded

Bitmap Index improves the space utilization, and solves

sparsity problems. The size of the Encoded Bitmap Index

built on the high cardinality column is less than the Pure

Bitmap Index. Having a well defined encoding scheme, a

Boolean operation can perform on the retrieval functions

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 44

before retrieving the data, and lead to a reduction of the

number of bitmap vectors read. Its performance is degraded

with equality queries since we have to search all the bitmap

vectors. The index needs to be rebuilt if we run out of bits to

represent new values.
Advantages of using encoded Bitmap Index are:

 It uses space efficiently.

 It performs efficiently with wide range query [8].
Disadvantages of using encoded Bitmap Index are:

 It performs inefficiently with equality queries.

 It is very difficult to find a good encoding scheme.

 It is rebuilt every time when a new indexed value for

which we run out of bit to represent is added [8].

3) Bitmap Join Index

A Join Index is built by translating restrictions on the

column value of a dimension table (i.e., the gender column) to

restrictions on a large fact table. The index is implemented

using one of the two representations: row id or bitmap [11],

depending on the cardinality of the indexed column. A bitmap

representation, which is called Bitmap Join Index, is used

with the low cardinality data while a row id representation is

used with a high cardinality. In DW, there are many join

operations involved; so building Join Indexes on the joining

columns improves query-processing time.
Advantages of using Bitmap join Index are:

 It is flexible.

 It performs efficiently.

 It supports star queries.

Disadvantages of using Bitmap join Index are:

 The order of indexed column is important [8].

B. B-tree index

B-tree indexing is an indexing technique that has a

concerned awareness in multi dimensional database

performance. A B-tree index is organized like an inverted

tree. The leaves of the index hold the actual data values and

pointers to the subsequent rows. In a data warehouse, B-tree

indexes should be used only for unique columns or other

columns with very high cardinalities that is, columns that are

almost unique. B-tree indexes can be used when a query refers

to the indexed column and retrieves a few rows. In these

queries, it is faster to find the rows by looking at the index.

Merits of using B-Tree indexing are:

 It speeds up known queries.

 It is well suited for high cardinality.

 The space requirement is independent of the cardinality

of the indexed column.
 It is relatively inexpensive when we update the indexed

column since individual rows are locked [8].
Demerits of using B-Tree indexing are:
 It performs inefficiently with low cardinality data.

 It does not support ad hoc queries. More I/O operations

are needed for a wide range of queries.

 The indexes cannot be combined before fetching the

data [8].

C. Projection Index

A Projection Index on an indexed column A in a table T

stores all values of A in the same order as they appear in T.

Each row of the Projection Index stores one value of A. The

row order of value x in the index is the same as the row order

of value x in T [12]. Projection Index on the columns reduces
terrifically the cost of querying because a single I/O operation

may bring more values into memory. Sybase has such an

indexing technique named FastProjection Index on every

column of a table. The main purpose of projection indexes is

to reduce the cost of querying a particular attribute field.

Projection indexes work faster than other techniques when

only the column values are desired as opposed to the table

rows themselves, because the actual tuples of the fact table

need not be accessed at all.

Merit of projection indexing is:

 It speeds up the performance when a few columns in the

table are retrieved.
Demerit of projection indexing is:

 It can be used only to retrieve raw data (i.e., column list

in selection) [8].

IV. INDEXING COMPARITIVE STUDY

Indexing in data warehouse is very much essential these

days, as importance of strategic information is increasing day

by day. Companies need to analyze their data frequently and
this can only be analyzed via querying on giant data

warehouse. Querying on such a giant data warehouse, takes a

long time to produce results of these queries. To solve this

problem of long response, indexing is used. Indexing

basically increases the speed of searching data depending

upon different criteria‟s. Depending upon the size of data

warehouse, cost, space requirement, types of queries to be run

on etc., indexing technique is chosen. There are different

indexing techniques possible, but according to the

requirement of company, data warehouse design and expected

queries to be run on (i.e. expected outcomes from the data

warehouse) indexing technique is being chosen.
Table 1 shows the comparative study of five different

indexing techniques, based upon some specific domains;

depending upon which one can choose which technique they

can apply to their data warehouse. Indexing type should to

chosen such that it is cheap, uses less space, is more efficient

in terms of query processing speed and most importantly

produces correct results. Depending upon the type of queries

to be run onto the data warehouse, indexing technique

performance also changes. All techniques don‟t work for star

support query, e.g. only bitmap join index works for star

query. Projection index works well for queries when few
columns are retrieved, similarly pure bitmap indexing works

efficiently with columns involving scalar functions and b-tree

indexing works efficiently for known queries and so on.

So, this paper provides a comparative study of few

indexing techniques to solve a very big problem of choosing

any one of these techniques. At least this paper will provide

an idea to people that how to increase efficiency of query

performance. Hence, it is basically provided to speed up data

retrieval access speed.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 7, JULY 2012

[ISSN: 2045-7057] www.ijmse.org 45

V. CONCLUSION

This paper basically shows the difference between

different indexing techniques by first showing the difference

between bitmap indexing (pure bitmap, encoded bitmap, bit-
slice), projection indexing, b-tree indexing upon criteria‟s like

as basic characteristic, column cardinality, space requirement,

cost, speed of querying, index combination support and star

query support. Then, they are explained individually

depending upon their merits and demerits. The main focus of

this paper is on how and when to choose, which kind of

indexing technique. The paper would give a basic idea to

company‟s data warehouse designers that what they should do

to optimize query performance i.e. use of indexing and which

kind of indexing (depending upon the requirement).

REFERENCES

[1] Paulraj Ponniah, Data Warehousing Fundamentals, Wiley India Pvt.
Ltd., Reprint 2008.

[2] Inmon, W.H., Building the Data Warehouse (2nd Edition), New
York: Wiley, 1996.

[3] Transaction Processing Performance Council (TPC), “TPC
Benchmark D, Decision Support”, Standard Specification Revision
2.0.1, December 5, 1998, http://www.tpc.org.

[4] OLAP Council, “APB-1 OLAP Benchmark Release II”, November
1998.http://www.olapcouncil.org

[5] Wikipedia, http://en.wikipedia.org.

[6] Vanichayobon S., Gruenwald L., “Indexing Techniques for Data
Warehouses‟ Queries”

[7] Maher G. El, Haddouti H., “Bitmap indexing and related indexing
techniques”

[8] Ghanjaoui Y., Haddouti H., “Indexing Techniques in Data
Warehousing Environment the UB-Tree Algorithm”

[9] Weigel F. ,”A Survey of Indexing Techniques for Semistructured
Documents”

[10]] Azefack S.,Aouiche K. andDarmont J., “Dynamic index selection
in data warehouses

[11] P. O‟Neil and G. Graefe, “Multi-Table joins through Bitmapped
join indices”, SIGMOD Record, Vol. 24, No. 3, Sep. 1995.

[12] P. O‟Neil and D. Quass, “Improved Query Performance with
Variant Indexes”, SIGMOD, 1997.

Table 1: Indexing Comparative Study

Indexing

Techniques
B-Tree Index

Pure Bitmap

Index

Encoded

Bitmap Index

Bitmap Join

Index
Projection Index

Properties

Basic

Characteristic

It is being

implemented at

the leaves of the

index. It has 2

representations

i.e. row id and

bitmap; one is

opted depending

upon the

cardinality of the

data.

It uses equality

encoding scheme.

An array of bits is

used to represent

column value of

each row in a table,

where values are set

according to the

following

convention:

ON (1),

OFF(0)

In this technique,

indexes are basically

bit-sliced index are

built on attribute

domain.

The index is built in

the fact table but by

the restriction of a

column on the

dimension table.

The actual values of the

columns of the indexed

table are stored to built

index here.

Column

Cardinality

Suited for high

cardinality

columns

Suited for low

cardinality columns

Suited for low

cardinality columns

Suited for low

cardinality columns

Suited for high cardinality

columns

Space

Requirement

Space

requirement is

independent of

cardinality of

indexed columns

Uses very less space Uses space efficiently

Cost Relatively

inexpensive

when we

update the

indexed

column

Very expensive

when we update

index

column

Expensive as rebuilt

every time

when a new indexed

value for which we

run

out of bit to represent

is added.

Expensive as rebuilt

every time

Relatively inexpensive

Speed of

querying

Speeds up known

queries

Performs efficiently

with columns

involving

scalar functions

Performs efficiently

with wide range

query

Speeds up the

performance when a

few columns in the table

are retrieved

Indexes

Combination

possibility

The indexes

cannot be

combined before

fetching the data

The indexes can be

combined before

fetching raw data

Star Query

Support

Does not support Does not support Does not support Supports star queries Does not support

http://www.olapcouncil.org/

