
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 10

Abstract– While inclusion of mobile devices into grid computing

provides numerous advantages, the current implementations are

either too complex or too specific, hence, cannot often be used

efficiently by small to medium scale organizations. Further,

diversity of platforms & development environments and virtual

non-existence of high-end mobile devices until last few years were

some of the hindrances in the path of incorporating mobile

devices in real world grids. To address these lacunae, herein we

introduce a new simplistic framework “jUniGrid” for integrating

mobile devices as workstations in heterogeneous grid computing

(desktop volunteer grid computing systems, DGVCS) to be used

for performing high complexity computational problems.

jUniGrid is a flexible grid architecture designed to deploy java-

enabled devices (mobile or otherwise) as grid-nodes.

Keywords— Desktop Grid, Volunteer Computing, Grid

Computing, Mobile Grid, Android Mobile, Heterogeneous Grid,

DGVCS and M/DGVCS

I. INTRODUCTION

he term “Grid Computing” [9, 12, 13, 39] represents a

distributed computing infrastructure enveloping a number

of separate/independent computing devices, for

accomplishing highly resource intensive computing tasks. The

definition of Grids has been redefined along the years. Initially

Grids were defined as an infrastructure to provide easy and

inexpensive access to high-end computing. Then, it was
refined as an infrastructure to share resources for collaborative

problem solving. More recently, the Grid definition evolved

into an infrastructure to pool and virtualize resources and

enable their use in a transparent fashion [19].

To keep up with the exponential demand for computing

power & to control costs, grid computing has emerged as an

important alternative of supercomputing with several

competitive advantages [2, 20, 22, 23]. In fact, volunteer

computing (VC) platforms are one of the largest and most

powerful distributed computing systems on the planet, running

applications from diverse scientific domains (including
computational biology, climate prediction, and high-energy

physics) [23].

A mobile grid (as opposed to conventional grid) makes use

of computing power available in mobile computing devices

(specifically smart phones and tablets). A mobile grid

infrastructure [4, 30] proposes the integration of mobile

devices with grid environments. This proposal has two

possibilities to interact with the grid (1) A mobile device may

be used as an access interface to a grid (e.g., grid portal) or (2)

Mobile devices may be deployed as resources for a grid,

providing processing and/or other resources facilities.

Although, mobile nodes may not be the best choice to

participate in high-performance distributed computation

facility for large-scale/grand-challenge applications as of now,

they offer very impressive computational performance (say in
3D-rendering or multimedia – think iPhone or android

mobile), and the scenario is improving with maturing

technology [16]. As these devices are continuously powered

and available for potential assignments, they are fair, if not the

best, candidates for grid computing applications. Further, as

would be discussed later in this article, a “mobile grid” not

only utilizes available mobile devices‟ idle potential –

providing additional computing power in various deployment

scenarios, but also provides an efficient means for creating on-

demand ad-hoc grid computing solutions or yet further,

extending existing grid implementations. From a business

process viewpoint, this implies that mobile nodes can be
involved directly in workflow activities (such as task-

submission). Thus, mobile grids have to overcome content

delivery and portal-based approaches (common practice in

current implementations) for extending grids to mobile

devices [34].

II. RELATED WORKS

The field of the grid computing is rich with regard to diverse
concepts, architectures and solutions. Several

frameworks/APIs/Toolkits/Middleware are available for

developing grid software, perhaps most notable of them being

the Globus Toolkit [11, 38], Legion [15], Condor [28] and

GridGain (www.gridgain.com/). These frameworks are meant

to furnish mainly two types of systems, referred as “Service

Grids” (e.g., EGEE) and “Desktop Grids” (volunteer

computing, e.g. BOINC and XtremWeb). Technological cross-

over projects to facilitate interoperability between “service”

and “desktop” grids are also being pursued [2, 22]. Although

current state of the art has not addressed the problems of

mobile grid computing in their entirety, some issues related to
mobile grid computing have been addressed (and

corresponding architectures proposed) in last decade [8, 27,

29]. These are referred below with brevity.

J. Hwang et al. [17] propose a virtual cluster approach and a

middleware to provide peer-to-peer operations. Siegel et al.

jUniGrid: A Simplistic Framework for

Integration of Mobile Devices in Heterogeneous

Grid Computing

Ketan B. Parmar
1
,* Nalinbhai N. Jani

1
, Pranav S. Shrivastav

2
, Mitesh H. Patel

2

1Department of Computer Sicence, Kadi Sarva Vishwavidyalaya, Gandhinagar – 382015, Gujarat, India
2Chemistry Department, School of Sciences, Gujarat University, Navrangpura – 380009, Gujarat, India

T

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 11

[29] and Datta [8] have advanced conceptual models of ad-hoc

mobile grid architectures that deploy intelligent agents and

relay on the virtual backbone (constructed from powerful

mobile nodes and maintained with a proactive protocol) to

organize the network scale resources for a specific mission.

Similar models have been the theme in many recent papers
and research projects lately [4, 5, 10, 14] but none of these

provide any implementation methodology or an architecture to

support this integration. T. Phan et al. [34] have visited the

challenges of integrating mobile devices with computational

grid in detail within the scope of their project. They propose,

the integration be provided through the use of an Interlocutor

(software agent), which acts as proxy for cluster of Minions.

Kurkovsky et al. [24, 25, 26] have proposed an agent based

wireless grid architecture to solve computationally expensive

tasks. Their architecture enables mobile devices within a

wireless cell to form computational grid. P. Mudali et al. [31]

have addressed the mobility concerns to certain extent by
extending the architecture (by Kurkovsky et al in [25]) to a

multi-cell wireless computational grid based on location area

concept in GSM cellular networks. The proposed wireless

computational gird is capable of greater device mobility

tolerance than previous work [25].

Ian F. Akyildiz[1] et al. have proposed a simplified random

walk model for hexagonal cell configuration where,

probability states gives performance of the model. Further

Guoliang Xue et al. [42] and A.B.M. Siddique Hossain [18]

have proposed improved models by reducing number of

probability states to improve the performance. Chiu-Ching
Tuan et al. have proposed two seperate models for PCS

networks, namely „novel normal walk model‟ [41] (for mesh

cell configuration) and „compact normal walk model‟ [40] (for

hexagonal cell configuration) to describe the daily mobility

behavior of an individual mobile device that moves from a cell

to another, Reades et al. [35] also looked at how call volume

at a cell tower correlates with urban activities in the

geographic vicinity of the tower in PCS networks. Jingyuan

Zhang [43] has described various location management

schemes and mobility modeling method used for cellular

networks and also provided the comparison of these methods.

M. N. Birje [3] et al. have proposed a prediction based
handover model for multiclass traffic in wireless mobile

networks by using software agents, considering two cases:

local handoff (between BSC‟s connected to same mobile

switching center (MSC)), and global handoff (between BSC‟s

connected to different MSC). Reades et al. [3] monitors th

locations o mobile users in an urban environment and

studies the dynamics of mobile usage and crowd movement
over time.

Mobile OGSI.NET [7] is an implementation of an OGSI

based grid container on the .NET hosting environment on

mobile devices based on Microsoft‟s PocketPC. Mobile

OGSI.NEt al.lows for Grid service state saving and restoring

and distribution of workload among devices with the same

types of services, but with the cost of having to change

existing services to adhere to the specific Mobile OGSI.NET

programming model. AKOGRIMO [37] is a European funded

project that is geared to deal with mobility issues in the Grid.

The purpose of the project is to evaluate the mobile grid

introducing the notion of mobile dynamic virtual organizations

through applications that highlight the challenges present in

such mobile environments, like e-health, e-learning and crisis

management.

„Ibis for mobility‟ project by Palmer et al. [33] applies grid

computing techniques to distributed computing on mobile
devices, which includes integrating mobile phones into the

grid. Similarly, WIPdroid by Chou and Li [6] is another

distributed computing platform for Android. It is based on the

Web Services Session Initiation Protocol (WIP), which allows

“real-time service-oriented communication over IP”. Further,

GridGain Systems has succeeded in running the GridGain

cloud computing platform on Android phones Kharif[44], but

this is still in early stages of development. The GridGain

architecture is probably the closest to Hadoop‟s of all of the

grid systems that are being targeted at mobiles. GridGain

directly supports deployment on a cloud, and MapReduce is

an important feature of the system.
As can be observed, the problem with many of above

mentioned works are related to the idea of developing a

specialized framework for Mobile Grid computing, however, a

better approach to utilize mobile devices would be to engage

them as nodes along with desktop systems, as

supplement/additional resources. To explain this approach, we

report herewith a new extremely light framework/API for

developing grid applications that can leverage computing

potential of mobile devices either to boost DGVCSs or as

standalone desktop/mobile/heterogeneous grids.

III. CHALLENGES AND OBJECTIVE

The potential benefit of the integration of mobile devices

into the Grid comes at a cost of resolving many technical

difficulties, which have been the theme in many other papers

and research projects lately [10], yet none of these provide any

implementation methodology to support the said integration.

The use of mobile devices in grid computing presents

following challenges…
Availability: As the primary purpose of some of these

devices is not computing, and the very fact that they are

“mobile” implies that they will not be available “locally” for

the computing purpose for extended hours. Further, as these

devices are “battery powered”, battery life is also a major

concern.

Processing capability: The processing capability of mobile
devices nowadays ranges from a few MHz to ca. 2.x GHz

(dual or quad core), or even more, which is comparable with

typical workstations of specialized clusters, however, these are

still far inferior on RAM and local storage, thus their use is

currently expected to be limited for computational grids, rather

than data grids, as computational Grids are based on large-

scale resource sharing assuming a virtual pool of resources

rather than computational nodes [32]

Connectivity: Conventional (wired) networking is neither

advisable nor feasible for mobile devices, which defeats very

purpose of their being mobile. The other available options,

like GPRS are quite slow where as Wi-Fi networking is quite
limited in the range. 3G or 4G/LTE networks can be good

options, albeit in future.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 12

Platform: Mobile devices meant for different purpose and

developed by different venders run different Operating

Software (OS-often closed source), and software development

tools for some of them are not available altogether. This poses

a very difficult task of designing a general architecture that

can leverage advantages of a vast majority of
software/hardware platforms.

The goal of present investigation is to provide a basic

generalized grid mechanism for co-operative processing to

allow multi-platform operability, i.e. support for software &

hardware heterogeneity. Here, multi-platform is supposed to

mean “supporting any device (hereafter referred as

workstation or node, unless otherwise specified) comprising

computational ability and capable of being connected to the

grid via appropriate communication mechanism (eg. Wi-Fi,

GPRS, Wired LAN etc.)”. In practice however, some

prerequisites do exist, such as support for JAVA in present

case to contest platform diversity issue discussed above.
Further, support for dynamic scalability (on-the-fly addition or

removal of nodes) is also a prime criterion, which can address

major concerns regarding “Availability”, “Processing

Capacity” and “Connectivity”, wherein the grid-size can be

altered dynamically, subject to complexity of the task and

availability of resources.

Here, the “User Application” and “Node Application” are

collectively termed “Grid Application” (sometimes also

referred as middleware). As the “Grid Application” is tailor-

made for each individual project, herein we introduce

jUniGrid – A generic framework (API) for developing Grid
Applications for mobile & fixed computing devices.

IV. THE “JUNIGRID” FRAMEWORK

Figure 1: Network diagram of a grid junigrid

 Figure 1 shows network diagram of a jUniGrid. The grid

operates using two different applications, namely Task-

Submitter TS (one instance of TS each per grid in normal

deployment) and Node-Application NA (one or more instance

on every Node/workstation). Both these applications NA and

TS are of the type user-application, developed by the user for

particular grid implementation using jUniGrid

framework/API. Working together, they collectively serve as

Grid Application. Both applications can be deployed on any

combination of Mobile device or Desktop System. NA and TS
can be connected through any combination of wired or

wireless network technology.

Figure 2: is depiction the architecture and workflow of junigrid

Figure 2 Features representative units of the grid, namely,
NA (Node Application or Node) and TS (Task Submitter).

The NA executes the job and submits the results to TS. The

TS registers and keeps track of Node(s), distributes the jobs to

the NA(s), monitors the status of NA(s) and collects the

results. If both applications are hosted on different

workstations, the type of workstation is identified based on the

application it is running (i.e. Task-Submitter and Node). In

principle, jUniGrid architecture allows multiple instances of

TS (each managing different applications) to run on single or

multiple workstations of the grid by appropriate configuration.

This may give rise to some interesting possibilities, all of
which may not be discussed here for the sake of brevity;

however, one particular arrangement deserves a brief mention

here, wherein, multiple instances of TS are hosted in a closed

network to set up a small task-submitter grid, which is not

only a more reliable setup but also a cost-effective alternative

of high-end master servers, especially in volunteer grid

computing scenarios.

jUniGrid works based on Map/Reduce (split/merge)

algorithm. It provides the user with flexibility to split the job

and merge the results according to requirement of the job. This

split and merge is accomplished by TS, as defined by user. TS

comprises of three modules, the responsibilities of which are
explained below.

Job Allocation: When user submits job(s) to TS, it

generates unique id for every job (preparation) and make a list

in FIFO manner for execution (scheduler). The initial status of

every job is pending. Job status can be Pending, Assigned,

Completed and Fail. jUniGrid maintain job start time, end

time, node IP (After assign job to the Node), job Name, job

Status for every job. This information is useful for analysis

and monitoring. Upon receipt of a job request from NA

(Node), the dispatcher dispatches the Jobs to the requesters,

subject to availability.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 13

Job Monitoring: Job monitoring for a simplistic framework

such as jUniGrid is only required for situations where the

device becomes non-responsive while connected with the grid,

and as such, may prove to be redundant in a sense that it will

scavenge computing power which may otherwise be used for

application computations. Nonetheless, redundant or not, a
monitoring system is required for any grid expected to scale

up.

 Result Aggregation: jUniGrid has event based notification

mechanism, which is used to reduce (merge) calculation to

generate final result. It cache all result in memory or storage

(as per configuration) until batch completed.

The applications TS and NA are synonymous with the

workstations in the scope of present discussion, thus the

following explanation will address only two entities, the

applications NA and TS.

Next, we discuss the execution flow and communication

between Task Submitter (TS) and Node Application (NA).

1. [Task Submitter] Upon inception, TaskInfoManager

creates an jobList. JobList contains an object of GridJobInfo.

GridJobInfo Object is comprised of a JobHeader and JobBody.

NodeHandler listen on configured socket and waits for

connection requests from node(s).

2. [Node] Upon inception, node continuously requests a
connection with Task Submitter until successful. Once a

connection is established, it sends a syntectic signal

“Requrest_For_Job” and waits until a job is received in the

form of a GridJobInfo Object.

3. [Task Submitter] When NodeHandler receives any request
from Node, It notifies NodeInfoManager to update NodeList

accordingly. If the IP of the requesting node is not already

registered in NodeList, NodeInfoManager will considers

requester as new node. NodeHandler refers to the JobList and

assigns the requester with a Job in FIFO manner.

Status of all the Jobs is monitored/managed by

NodeHandler. Each new job entry in JobList bears InQueue

Status. Once assigned, The status is changed to assigned. If the

connection with the node is severed, the job status is reflected

as failed. If the node completes and submits the job back, the

status is completed. In FIFO assignment of Jobs. If there is no

job with InQueue status, all Jobs with failed status are
converted to InQueue status.

NodeHandler waits for response from Node(s) concerning

assigned Job(s).

4. [Node] Upon receipt of a job, in form of GridJobInfo

object, the node invokes Execute method of the received

GridJobInfo object (which is actual processing – specified by

user), upon completion of which the results are filled in the
JobBody of GridJobInfo object and JobHeader is updated

accordingly and the Node is notified of the completion of

processing. So notified, the Node returns the GridJobInfo

Object to the Task Submitter followed by requests for a New

job. The process is repeated in infinite manner till the node is

par of the grid.

5. [Task Submitter] When NodeHandler Receives a

completed Job from Node in the form of GridJobInfo Object,
It updates the JobList and notifies the user about completion

of individual job or proceeds to further process the results as

specified by the user.

Above exchange continues in a repetitive manner until all

the jobs completed.

To implement the jUniGrid framework, one needs to

develop two applications TS and NA using the jUniGrid API.
The actual computation part is coded in the job class, depicted

below:

V. BENCHMARKING, RESULTS AND DISCUSSION

The test application was designed to compare the

performance of desktop (Dell Dimension 8200 with Intel

Pentium 4, 2.4 GHz processor with 1 GB RAM, running

Windows XP SP2, JVM 1.6) and mobile (HTC Nexus One, 1

GHz processor, 512 MB RAM) nodes in grid configurations

for computation-intensive tasks. The task was DNA sequence

matching (sequence a: 500 Nucleosides, sequence b: 250
Nucleosides – same sequences matched 60 times, using

Crochemore-Landau-ZivUkelson Local Alignment method

with NeoBio – a library of bioinformatics algorithms

implemented in Java. http://neobio.sourceforge.net/).

To measure effect of integrated mobile nodes in grid

computing system we performed three tests 1. Grid system has

all mobile nodes 2. Grid system has all desktop nodes 3. Grid

system has both mobile and desktop nodes in various

configurations.

Figure 3: Performance variation with # mobile nodes

Figure 4: Performance variation with # desktop nodes.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 14

Figure 5: Performance variation with # of mobile and desktop nodes

Figure 5 and Figure 6 show performance of the jUniGrid

framework with only mobile or desktop nodes respectively in

various configurations. Figure 7 shows the performance with
mixed (x mobile + y desktop) nodes. The most obvious

observation from the first two graphs is the reduction in

resultant network delay due to parallel task submissions, a

characteristic of every grid implementation. That is to say, the

total network delay remains the same however, as there is no

waiting for results involved between submissions or lake of

synchronicity (which would be the case with only one node),

the tasks can be submitted to different nodes simultaneously.

The data in figure 5 and 6 also demonstrate that load balancing

is automatically accomplished in such simple test cases.

Figure 7 explains the comparative task execution efficiency of

the mobile and desktop nodes. Notable inferences are 1. Even
when number of mobiles is greater than desktops, the grid

performs as expected, albeit slow. 2. When the grid consists

equal number of mobile and desktop nodes, the mobile nodes

accomplish almost 30% of the total task. 3. When a single

mobile node is added to a 5 desktop grid, it still accomplishes

5 tasks (out of total 60). 4. When 2 mobile nodes are added to

a grid comprising 4 desktops, they perform almost like a fifth

desktop node.

The android mobile phone is capable of executing the job

approximately 1/3th as fast as a single computer system,

which is substantial, considering limited resources of a mobile
phone. Also notice that replacing one computer system of a

three nexus one devices (or similar capacity device) grid with

a mobile node results.

It should be stressed here that the applications for

benchmarking were not optimized to give best results or high

computational capacity, rather, the benchmarking is

undertaken merely to show the feasibility of the concept and a

rough estimate of what is to be gained out of it. In actual

implementation however, the node applications as well as jobs

can be optimized with respect to network latency,

computational capacity range of various devices, RAM usage

and application stability, which is sure to show even better
results.

Let‟s see different scenarios in which advantage of mobile

grid computing can be leveraged. Analyze the following use

cases.

The first and foremost use of jUniGrid is envisaged for ad-

hoc grid computing solutions for small to medium

organizations to manage computationally intensive tasks with
minimal resources, say a few java enabled mobile phones. One

of the available mobile phones may be deployed as Master &

Task submitter and the rest may work as nodes. Thus a

working grid may be up-and-running in a few minutes, with

any number of nodes. Also, the number of nodes may be

changed dynamically, i.e. the nodes may be added/removed

even while the grid is processing. Up-scale extension of such

ad-hoc grid will result in what can be termed as

“Mobile/Desktop Grid & Volunteer Computing System

(M/DGVCS – in analogy with traditional DGVCS)” which

utilizes the free resources available in Intranet or Internet

environments for supporting large-scale computations (and
hopefully storage).

The second scenario is On-Demand expansion of an existing

grid system. It is generally not easy to expand the

conventional grid systems without considerable expenses

(additional hardware). With mobile phones added to the grid,

the performance of an existing grid may be boosted up,

especially in critical situations where physical expansion of

grids is not possible due to technical, local or financial

problems. As has been observed in the benchmarking tests, the

android mobile connected to an existing grid can provide ca.

30% computing power compared to a conventional node
(PC/Laptop). Thus, in critical situations, the performance can

be boosted considerably on-demand. This will result in

dramatic performance improvement in smaller grids, where

this increased processing power will be more visible.

VI. CONCLUSION

In this paper, we have surveyed the challenges for mobile

grid computing and introduced a feasible solution for the

same, in the form of a lightweight architecture/API for

developing grid applications. Although the framework is

adaptable universally, its use is primarily intended to integrate

mobile devices for conventional or ad-hoc heterogeneous grid

implementations to crop the resource potential created by the
networked mobile devices. The performance issues are given

their due importance and have been examined by appropriate

preliminary benchmarking tests. Also discussed are different

deployment scenarios and use-cases for implementing mobile

grids as real world, rather than conceptual, solutions.

ACKNOWLEDGMENT

Ketan Parmar wishes to acknowledge Mr. Devang Rughani

of DevIndia InfoWay for the infrastructural support.

REFERENCES

[1] Akyildiz IF, Lin YB, Lai WR, Chen RJ, A new random walk
model for PCS networks. IEEE J. Selected Areas
Communication 18, 7 (2000),1254-1260.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 1, JANUARY 2013

[ISSN: 2045-7057] www.ijmse.org 15

[2] Balaton Z, Farkas Z, et al, EdgES: the Common Boundary
between Service and Desktop Grids. Parallel Process. Lett, 18
(2008), 433-445.

[3] Birje MN, Manvi SS, Kakkasageri MS, Saboji SV, Prediction
Based Handover for Multiclass Traffic in Wireless Mobile

Networks: An Agent Based Approach. ICICS, (2007)1-5.
[4] Bruneo D, Scarpa M, Zaia A, Puliafito A, Communication

Paradigms for Mobile Grid Users. IEEE/ACM International
Symposium on Cluster Computing and the Grid, (2003) 1-8.

[5] Chlamtac,Redi J, Mobile Computing: Challenges and
Potential, Encyclopedia of Computer Science, 4th edition,
(1998).

[6] Chou W, Li Li, WIPdroid - a two-way web services and real-

time communication enabled mobile computing platform for
distributed services computing. In SCC ‟08: Proceedings of the
2008 IEEE International Conference on Services Computing,
(2008) 205–212.

[7] Chu D, Humphrey M, Mobile OGSI.NET: Grid Computing on
Mobile Devices, (2004).
http://www.cs.virginia.edu/~humphrey/papers/MobileOGSI.pd
f. Accessed 26 July 2012.

[8] Datta A, Mobigrid: Peer-to-peer overlay and mobile ad-hoc
network rendezvous -a data management perspective. the 15th
Conference On Advanced Information Systems Engineering,
Austria, (2003).

[9] European Grid Forum, http://www.egrid.org Accessed 26 July
2012

[10] Forman GH, Zahorjan J, The Challenges of Mobile
Computing. IEEE Computing Milieux, (1994) 38-47.

[11] Foster I, Keeselman C, Globus: A metacomputing
Infrastructure Toolkit. Int. J. High Perform. Comput. Appl, 11
(1997), 115–128.

[12] Foster I, Kesselman C (eds.), The Grid2: Blueprint for a New
Computing Infrastructure. Morgan Kaufman, (2004).

[13] Foster I, Kesselman C,Tuecke S, The anatomy of the grid:
enabling scalable virtual organizations. Int. J. High Perform.
Comput, 15 (2001), 200-222.

[14] Franz M, A Fresh Look at Low Power Mobile Computing,

(2003). http://research.ac.upc.es/pact01/colp/paper15.pdf
Accesssed 26 July 2012

[15] Grimshaw A, et al., Legion: The next logical step towards a
nationwide virtual supercomputer. Technical Report CS-94-21,
University of Virginia, Computer Sciences Department, (1994).

[16] Heng H, Buyya R, Bhattacharya S, Mobile Cluster Computing
and Timeliness Issues. Informatica (Ljubl.), 23 (1999), 5-17.

[17] Hwang J, Aravamudham P, Proxy-based Middleware Services

for Peer-to-Peer Computing in Virtually Clustered Wireless
Grid Networks. Proc. of International Conference on
Computer, Communication and Control Technologies, (2003).

[18] Imdadul Islam MD,Siddique Hossain ABM, A proposed
random walk model for mobile cellular network. ICECE,
(2004), 386-389.

[19] Jiménez PR, Patiño MM, Kemme B, Enterprise Grids:
Challenges Ahead. J. Grid Computing, 5 (2007), 283–294.

[20] Kacsuk P, Podhorszki N, Kiss T, Scalable Desktop Grid
System. International Meeting of High Performance
Computing for Computational Science (VECPAR'06), Rio de
Janeiro, Brazil, (2008).

[21] Kharif O (2008) A warm welcome for android. BusinessWeek
[22] Kiss T, et al., Solving Grid interoperability between 2nd and

3rd generation Grids by the integrated P-GRADE/GEMLCA.
Proceedings of the UK e-Science All Hands Meeting,

Nottingham, UK, (2006).
[23] Kondo D, et al., Cost-Benefit Analysis of Cloud Computing

versus Desktop Grids. 18th International Heterogeneity in
Computing Workshop, Rome, (2009).

[24] Kurkovsky S, Bhagyavati, Modeling a Computational Grid of
Mobile Devices as a Multi-Agent System. Proc. of the 2003
International Conference on Artificial Intelligence,Las Vegas,
NV, (2003).

[25] Kurkovsky S, Bhagyavati, Ray A, A Collaborative Problem-

Solving Framework for Mobile Devices. ACMSE,Huntseville,
Alabama, USA, (2004).

[26] Kurkovsky S, Bhagyavati,Ray A, Modeling a Grid-Based
Problem Solving Environment for Mobile Devices. Journal of
Digital Information Management, 2 (2004),109-114.

[27] Litke A, Skoutas D, Varvarigou T, Mobile grid computing:
Changes and challenges of resource management in a mobile
grid environment. Proceedings of Practical Aspects of

Knowledge Management (PAKM 2004), Austria, (2004).
[28] Litzkow M, Livny M, Mutka M, Condor – a hunter of idle

workstations. Proceedings of the 8th International Conference

on Distributed Computing Systems. (1988),104–111.
[29] Marinescu DC, Marinescuand GM, Ji Y, Boloni L, Siegel HJ,

Ad hoc grids: Communication and computing in a power
constrained environment. Workshop on Energy-Efficient

Wireless Communications and Networks (EWCN), Phoenix,
USA, (2003).

[30] McKnight LW, Howison J, Bradner S, Guest editors‟
introduction: Wireless grids– distributed resource sharing by
mobile, nomadic, and fixed devices. IEEE Internet Computing,
8 (2004), 24–31.

[31] Mudali P, Adigun MO, Emuoyibofarhe JO, Minimizing the
Negative Effects of Device Mobility in Cell-based Ad-hoc
Wireless Computational Grids. SATNAC: South African

Telecommunication Network and Application Conference, 1
(2006), 10-11.

[32] Nemeth Z, Sunderam V, Characterizing Grids: Attributes,
Definitions, and Formalisms. Journal of Grid Computing, 1
(2003), 9–23.

[33] Palmer N, Kemp R, Kielmann T, Bal H, Ibis for mobility:
solving challenges of mobile computing using Grid techniques.
In HotMobile ‟09: Proceedings of the 10th workshop on

Mobile Computing Systems and applications. ACM, (2009) 1–
6.

[34] Phan T, Huang L, Dulan C, Challenge: Integrating Mobile
Wireless Devices Into the Computational Grid. 8th Annual
International Conference on Mobile Computing and
Networking (MobiCom 2002), Atlanta, Georgia, USA, (2002)
271-278.

[35] Reades J, Calabrese F, Sevtsuk A, Ratti C, Cellular census:

Explorations in urban data collection. IEEE Pervasive
Computing. 6 (2007), 30–38.

[36] Redi J, Mobile Computing: Challenges and Potential.
Encyclopedia of Computer Science, 4th edn. (1998).

[37] The AKOGRIMO project: http://www.akogrimo.org Accessed
26 July 2012

[38] The Globus homepage. www.globus.org Accessed 26 July
2012

[39] The Grid Forum, http://www.gridforum.org Accessed 26 July
2012

[40] Tuan CC, Yang CC, A Compact Normal Walk Model for PCS,
Networks. Mobile Computing and Communications Review, 7
(2004) 20-31.

[41] Tuan CC, Yang CC, A novel normal walk model for PCS
networks with mesh cell configuration, Journal of the Chinese
Institute of Engineers. 28 (2005), 677-690.

[42] Xue G, An improved Random Walk Model for PCS Networks.

IEEE Trans. Communication 50, 8 (2001), 1224-1226.
[43] Zhang J, Handbook of wireless networking and mobile

computing, John Wiley & Sons, Inc, (2004).

