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Abstract— Study of the vibration of thin cylindrical shells made 

of a functionally gradient material (FGM) composed of 

stainless steel and nickel is very important. The objective is to 

study the natural frequencies and the effects boundary 

conditions on the natural frequencies of the functionally graded 

cylindrical shell. The study is carried out using third order 

shear deformation shell theory (T.S.D.T). The analysis is 

carried out using Hamilton’s principle. The governing 

equations of motion of functionally graded cylindrical shells are 

derived based on T.S.D.T theory. Results are presented on the 

frequencies with various power law exponents.  

 

Keywords– Volume Fraction, Frequencies and Law Exponent 

 

I. INTRODUCTION 

esearches on free vibrations of cylindrical shells have 

been carried out extensively [1-5]. Recently, the present 

authors presented studies on the influence of boundary 

conditions on the frequencies of a multi–layered cylindrical 

shell [6]. In all the above works, different thin shell theories 

based on Love–hypothesis were used. Vibration of 

cylindrical shells with ring support is considered by Loy and 

Lam [7]. The concept of functionally graded materials 

(FGMs) was first introduced in 1984 by a group of materials 

scientists in Japan [8-9] as a means of preparing thermal 

barrier materials. Since then, FGMs have attracted much 

interest as heat-shielding materials. FGMs are made by 

combining different materials using power metallurgy 

methods [10]. They possess variations in constituent volume 

fractions that lead to continuous change in the composition, 

microstructure, porosity, etc., resulting in gradients in the 

mechanical and thermal properties [11-12]. Vibration study 

of FGM shell structures is important. In this paper a study on 

the vibration of functionally graded cylindrical shells is 

presented. The FGMs considered are composed of stainless 

steel and nickel where the volume fractions follow a power-

law distribution. The study is carried out based on T.S.D.T 

theory. The analysis is carried out using Hamilton’s 

principle.  
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II. FUNCTIONALLY GRADED MATERIALS 

For the cylindrical shell made of FGM the material 

properties such as the modulus of elasticityE , Poisson 

ratioν and the mass densityρ are assumed to be functions 

of the volume fraction of the constituent materials when the 

coordinate axis across the shell thickness is denoted by 

z and measured from the shell’s middle plane. The 

functional relationships betweenE , ν  and ρ  with z  for a 

stainless steel and nickel FGM shell are assumed as [13]. 
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Fig. 1. Geometry FGM Cylindrical Shell 
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1A  and 2A  are the fundamental form parameters or Lame 

parameters. The third- order theory of Reddy used in the 

present study is based on the following displacement field: 
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These equations can be reduced by satisfying the stress-free 

conditions on the top and bottom faces of the laminates, 

which are equivalent to 02313 ==∈∈ at 
2

h
Z ±=  Thus for third 

order theory 
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where
21

3

4

h
C = . Obtained for the third-order theory of 

Reddy is  
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III. FORMULATION 

The equations of motion for a generic shell can be derived 

by using Hamilton's principle which is described by: 

 

∫ =−Π
2

1

0)(
t

t
dtKδ  , VU −=Π                              (15) 

 

Where UK ,,Π and V  are the total kinetic, potential, strain 

and loading energies, 1t and 2t are arbitrary time. The 

kinetic, strain and loading energies of a cylindrical shell can 

be written as: 
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 The infinitesimal volume is given by 

 

32121 ααα dddAAdV =                                                   (19) 

 

with the use of Eqs. (16)-(18) and substituting into Eq. (15), 

we get the equations of motions a generic shell. 
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For Eqs. (20) – (24) are defining as  
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The displacement fields for a FG cylindrical shell and the 

displacement fields which satisfy these boundary conditions 

can be written as 
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where, A , B ,C ,D  and E  are the constants denoting the 

amplitudes of the vibrations in the θ,x  and z  

directions, 1φ and 2φ  are the displacement fields for higher 

order deformation theories for a cylindrical shell, )(xφ  is 

the axial function that satisfies the geometric boundary 

conditions. The axial function )(xφ is chosen as the beam 

function as 
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λ
γ

λ
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Substituting Eq. (26) into Eqs. (20) - (24) for third order 

theory we can be expressed  

 

0)(det 2 =− ωijij MC                                                  (28) 

 

Expanding this determinant, a polynomial in even powers 

ofω  is obtained 

 

oo =+++++ 5
2

4
4

3
6

2
8

1
10 βωβωβωβωβωβ                   (29) 

 

where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (29) is 

solved five positive and five negative roots are obtained. 

The five positive roots obtained are the natural angular 

frequencies of the cylindrical shell based third-order theory. 

The smallest of the five roots is the natural angular 

frequency studied in the present study. The FGM cylindrical 

shell is composed of Nickel at its inner surface and Stainless 

steel at its outer surface. The material properties for stainless 

steel and nickel, calculated at KT 300= , are presented in 

table 1. 

 
TABLE I 

PROPERTIES OF MATERIALS 

 
Coefficients Stainless Steel Nickel 

E ν  ρ  
E ν  ρ  

P 0  
201.04× 10

9
 

0.3262 8166 
223.95× 10

9
 

0.310

0 

8900 

P 1−  

0 0 0 0 0 0 

P 1  
3.079× 10-4 

-

2.002× 10
-4
 

0 
-2.794× 10-4 

0 0 

P 2  
-6.534× 10

-7
 3.797× 10

-7
 

0 
-3.998× 10

-9
 

0 0 

P 3  

0 0 0 0 0 0 

 
2.07788× 10

1

1
 

0.317756 8166 
2.05098× 10

1

1
 

0.310

0 

8900 

 

Where 211 ,,, PPPP −o
 and 3P  are the coefficients of 

temperature )(KT  expressed in Kelvin and are unique to 

the constituent materials. The material properties P of 

FGMs are a function of the material properties and volume 

fractions of the constituent material. 

IV. RESULTS AND DISCUSSION 

In this paper, studies are presented for a FGM cylindrical 

shell is considered. Table II, shows the variation of the 

natural frequency with the circumferential wave number n 

for a functional graded cylindrical shell with two rings 

support. The frequencies increased with the circumferential 

wave number. 
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TABLE II 

THE NATURAL FREQUENCIES FOR A FGM CYLINDRICAL SHELL  

 (m = 1, h / R=0.01, L / R=20, a1/L=0.3, a2/L=0.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

For simplicity, we actually vary the value of power law 

exponent whenever we need to change the volume fractions. 

Varying the value of power law exponent N of the FGM 

cylindrical shell with two rings support, natural frequencies 

are computed for this conditions. Results are also computed 

for pure stainless steel and pure nickel shells. All these 

results are plotted in Fig. 2.  
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Fig. 2. Natural frequencies FGM cylindrical shell associated with various 

volume fractions laws for 2 rings support m=1, h/R=0.01, L/R=20, 

a1/L=0.3, a2/L=0.6  

V. CONCLUSION 

A study on the vibration of functionally graded (FG) 

Cylindrical shell composed of stainless steel and nickel has 

been presented. The study showed that in this conditions the 

frequencies first decreases and then increases as the 

circumferential wave number n increases. The minimum 

frequency occurs in between n equals 2 and 3 for these 

boundary conditions. The results showed that one could 

easily vary the natural frequency of the FGM cylindrical 

shell with two rings support by varying the volume fractions 

laws.  
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m n ω (HZ) 

1 1 0.376687 

 2 0.472224 

 3 0.496101 

 4 0.506079 

 5 0.513007 

 6 0.520445 

 7 0.530317 

 8 0.544065 

 9 0.562919 

 10 0.587923 


