Suborbital Graphs and their Properties for Unordered Triples in A_n (n=5,6,7) Through Rank and Subdegree Determination

Cedric W. Ndarinyo¹ and Jane k. Rimberia²

^{1,2}Department of Mathematics, Kenyatta University, P.O. BOX 43844-00100, Nairobi ¹cedricndarinyo@rocketmail.com, ²janekagwiria@yahoo.com

Abstract- In this paper, through computation of the rank and subdegrees of alternating group A_n (n=5,6,7) on unordered triples we construct the suborbital graphs corresponding to the suborbits of these triples. When A_n ($n \ge 5$) acts on unordered pairs the suborbital graphs corresponding to the non-trivial suborbits are found to be connected, regular and have undirected edge except when n=6. Further, we investigate properties of the suborbital graphs constructed.

Mathematics Subject Classification: Primary 05E18; Secondary 05E30, 14N10, 05E15

Keywords- Rank, Subdegrees, Unordered Triple of an Alternating Group and Suborbital Graphs

I. PRELIMINARIES

A) Notation and Terminology

We first present some basic notations and terminologies as used in the context of graphs and suborbital graphs that shall be used in the sequel A_n -Alternating group of degree n and

order $\frac{n!}{2}$; |G| -The order of a group G; $X^{(3)}$ -The set of an

unordered triples from set $X = \{1, 2, ..., n\}$; {a,b,c} -Unordered triple;

Definition 1.1

A graph G is an ordered pair (V,E), where V is a non-empty finite set of vertices and E is a set of pairs of distinct vertices in G, called edges. A loop is an edge from a vertex to itself.

Definition 1.2

A multigraph is a graph which is allowed to have multiple edges, but no loops.

Definition 1.3

If $e = \{u,v\}$ is an edge of a graph G, then u and v are the end vertices of e, and we say u and v are adjacent in G. This relation is often denoted by $u \sim v$.

Definition 1.4

The degree or valency $d_G(v)$ of a vertex v of graph G is the

number of edges incident to v. A vertex of degree O is an isolated vertex. Graph G is the number of edges incident to v.

Definition 1.5

A walk of length k joining u and v in G is a sequence of vertices and edges of G of the form $v_{0,e_1,v_1,e_2,v_2,---,v_{k-1},e_k,v_k}$, where $v_0=u,v_k=v$ and $e_i=\{v_{i-1},v_i\}$ for i=1,2,--,k. A walk joining u and v is closed if u=v, and is a path if no two vertices of the walk (except possibly u and v) are equal; a closed path is called a circuit. Note that the edges $e_1,--,e_k$ will frequently be omitted from the definition of a walk.

Definition 1.6

A graph G is connected if every pair of vertices of G is joined by some path; otherwise, G is disconnected.

Definition 1.7

A graph D, or a directed graph consists of a finite non empty set V=D(V) of vertices together with a collection of ordered pairs of distinct vertices of V.

Definition 1.8

Let G be transitive on X and let G_x be the stabilizer of a point $x \in X$. The orbits $\Delta_0 = \{x\}, \Delta_1, \Delta_2, \dots, \Delta_{r-1}$ of G_x on X are called the suborbits of G. The rank of G is r and the sizes $n_i = |\Delta_i|$ (i=0,1,---,r-i), often called the 'lengths' of the suborbits, are known as the subdegrees of G. Note that both r and the cardinalities of the suborbits Δ_i (i=0,1,---,r-1) are independent of the choice of $x \in X$.

Definition 1.9

Let Δ be an orbit of G_x on X. Define $\Delta^{*=} \{gx \mid g \in G, x \in g\Delta\}$, then Δ^* is also an orbit of G_x and is called the G_x -orbit (or the G-suborbit) paired with Δ . Clearly $|\Delta| = |\Delta^*|$. If $\Delta^{*=}\Delta$, then Δ is called a self-paired orbit of G_x .

Theorem 1.10 [Wielandt 1964]

 G_x has an orbit different from $\{x\}$ and paired with itself if and only if G has even order.

Observe that G acts on X x X by $g(x,y)=(gx,gy), g \in G, x,y \in X.$

If $O \subseteq X \times X$ is a G-orbit, then for a fixed $x \in X$, $\Delta = \{y \in X \mid (x,y) \in O\}$ is a G_x -orbit.

Conversely if $\Delta \subseteq X$ is a G_x -orbit, then $O = \{(gx,gy) \mid g \in G, y \in \Delta\}$ is a G-orbit on X x X. We say that Δ corresponds to O. The G- orbits on X x X are called suborbitals. Let $O_i \subseteq X \times X$, $i = 0, 1, \dots, r-1$ be a suborbital. Then we form a suborbital graph Γ_i , by taking X as the set of vertices of Γ_i and by including a directed edge from x to y $(x, y \in X)$ if and only if $(x, y) \in O_i$. Thus each suborbital O_i determines a suborbital graph Γ_i . Now $O_i^* = \{(x, y) \mid (y, x) \in O_i\}$ is a G-orbit.

Theorem 1.11 [Sims 1967]

Let Γ_i^* be the suborbital graph corresponding to the suborbital O_i^* . Let the suborbit Δ_i (i=0,1,---,r-1) correspond to the suborbital O_i . Then Γ_i is undirected if Δ_i is self-paired and Γ_i is directed if Δ_i is not self-paired.

Theorem 1.12 [Sims 1967]

Let G be transitive on X. Then G is primitive if and only if each suborbital graph Γ_i (i=1,2,---,r-1) is connected.

Theorem 1.13 [Wielandt 1964]

Let G be transitive on X and let G_x be the stabilizer of the point $x \in X$. Let $\Delta_0 = \{x\}$, Δ_1 , Δ_2 ,---, Δ_{k-1} be orbits of G_x on X of lengths $n_0=1$, $n_1,n_2,$ ---, n_{k-1} , where $n_0 \le n_1 \le n_2 \le$ --- $\le n_{k-1}$. If there exists an index j>0 such that $n_j > n_1 n_{j-1}$, then G is imprimitive on X.

II. INTRODUCTION

In 1967, Sims [6] introduced suborbital graphs corresponding to the non-trivial suborbits of a group. He called them orbitals. In1977, Neumann [4] extended the work of Higman [2] and Sims [6] to finite permutation groups, edge coloured graphs and Matrices. He constructed the famous Peterson graph as a suborbital graph corresponding to one of the nontrivial suborbits of S_5 acting on unordered pairs from the set $X = \{1, 2, 3, 4, 5\}$. The Peterson graph was first introduced by Petersen in 1898 [5]. In1992, Kamuti [3] devised a method for constructing some of the suborbital graphs of PSL (2,q)and PGL (2,q) acting on the cosets of their Maximal dihedral sub-groups of orders q-1 and 2(q-1) respectively. This method gave an alternative way of constructing the Coxeter graph which was first constructed by Coxeter in 1986[1]. In this paper, through computation of the rank and subdegrees of alternating group An (n=5,6,7) on unordered triples, we construct the suborbital graphs corresponding to the suborbits of these triples and further investigate properties of the suborbital graphs constructed.

A) SUBORBITAL GRAPHS OF $G=A_n ACTING ON X^{(3)}$

In this section, we construct and discuss the properties of the suborbital graphs of G=An acting on $X^{(3)}$.

2.1 The suborbital graphs of $G=A_{\mathcal{F}}$ acting on $X^{(3)}$

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 3. These are:

$$Orb_{G_{\{1,2,3\}}} \{1,2,3,\} = \{\{1,2,3\}\} = \Delta_0$$
, the trivial orbit.

$$Orb_{G_{\{1,2,3\}}}\{1,2,4\} = \{\{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\},$$

 $\{2,3,4\}, \{2,3,5\}\} = \Delta_1$, which is the set of all unordered triples containing exactly two of 1, 2 and 3.

 $Orb_{G_{\{1,2,3\}}}$ {1,4,5}={{1,4,5}, {2,4,5}, {3,4,5}}= Δ_2 , which is the set of all unordered triples containing exactly one of 1,

2 and 3.

The suborbital graph corresponding to Δ_0 is the null graph and therefore not very interesting.

By Definition 1.1.9, Δ_1 and Δ_2 are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs Γ_1 and Γ_2 are undirected.

We construct Γ_1 and Γ_2 as follows:

Let A and B be any two distinct unordered triples from $X = \{1,2,3,4,5\}$.

(i) The suborbital O_1 corresponding to the suborbit Δ_1 is

 $O_1 = \{ (g \{1,2,3\}, g\{1,2,4\}) \mid g \in G \}.$

Therefore in Γ_1 , the suborbital graph corresponding to O_1 , there is an edge from vertex A to B if and only if $|A \cap B| = 2$.

(ii) The suborbital O₂ corresponding to the suborbit Δ_2 is O₂ ={ (g {1,2,3}, g{1,4,5}) | g \in G }. Therefore in Γ_2 , the suborbital graph corresponding to O₂, there is an edge from vertex A to B if and only if $|A \cap B| = 1$.

These graphs are as shown in the Fig. 1 and Fig. 2 below:

From the Fig. 1 and Fig. 2, we see that Γ_1 is regular of degree 6 and has girth 3 since there is an edge between each of the vertices {1,2,4}, {1,3,4} and {2,3,4}. On the other hand, Γ_2 is regular of degree 3 and has girth 5 since there is an edge between each of the vertices {1,2,3}, {3,4,5}, {1,2,4}, {1,3,5} and {2,4,5}. Moreover, Γ_1 and Γ_2 are connected, hence G acts primitively on X⁽³⁾ by Theorem 1.3.

2.2 Suborbital graphs of $G = A_6$ acting on $X^{(3)}$ and their properties

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 4. These are:

 $Orb_{G_{\{1,2,3\}}} \{1,2,3\} = \{\{1,2,3\}\} = \Delta_{0,}$ the trivial orbit.

 $Orb_{G_{\{1,2,3\}}} \{1,2,4\} = \{\{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,3,4\}, \{1,3,5\}, \{1,3,6\}, \{2,3,4\}, \{2,3,5\}, \{2,3,6\}\} = \Delta_1, \text{ which is the}$

set of all unordered triples containing exactly two of 1, 2 and 3.

 $Orb_{G_{\{1,2,3\}}}$ {1,4,5}={{1,4,5}, {1,4,6}, {1,5,6,}, {2,4,5}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}}=\Delta_2, which is the set of all unordered triples containing exactly one of 1, 2 and 3.

 $Orb_{G_{\{1,2,3\}}}$ {4,5,6}={{4,5,6}}= Δ_3 , which is the set of all unordered triples containing neither 1 nor 2 nor 3.

The suborbital graph corresponding to Δ_0 is the null graph and therefore not very interesting.

Figure 1: The suborbital graph Γ_1 corresponding to the suborbit Δ_1 of G acting on $X^{(3)}$

Figure 2: The suborbital graph Γ_2 corresponding to the suborbit Δ_2 of G acting on $X^{(3)}$

By Definition 1.1.9, Δ_1 , Δ_2 and Δ_3 are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs are undirected.

We construct Γ_1 , Γ_2 and Γ_3 as follows;

Let A and B be any two distinct unordered triples from $X=\{1,2,3,4,5,6\}$.

(i) The suborbital O_1 corresponding to the suborbit Δ_1 is

 $O_1 = \{ (g \{1,2,3\}, g\{1,2,4\}) \mid g \in G \}.$

Therefore in Γ_1 , the suborbital graph corresponding to O_1 , there is an edge from vertex A to B if and only if $|A \cap B| = 2$.

(ii) The suborbital O₂ corresponding to the suborbit Δ_2 is O₂ ={ (g {1,2,3}, g{1,4,5}) | g \in G }.

Therefore in Γ_2 , the suborbital graph corresponding to O_2 , there is an edge from vertex A to B if and only if $|A \cap B| = 1$.

(iii) The suborbital O₃ corresponding to the suborbit Δ_3 is O₃ ={ (g {1,2,3}, g{4,5,6}) | g \in G }.

Therefore in Γ_3 , the suborbital graph corresponding to O₃, there is an edge from vertex A to B if and only if $|A \cap B| = 0$.

These graphs are as shown in the Fig. 3 and Fig. 4 below:

Figure 3: The suborbital graph Γ_1 corresponding to the suborbit Δ_1 of G acting on $X^{(3)}$

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 6, NO. 6, JUNE 2015

Figure 4: The suborbital graph Γ_2 corresponding to the suborbit Δ_2 of G acting on $X^{(3)}$

Figure 5: The suborbital graph Γ_3 corresponding to the suborbit Δ_3 of G acting on $X^{(3)}$

www.ijmse.org

From the diagrams, we see that Γ_1 is connected, regular of degree 9 and has girth 3 since there is an edge between each of the vertices $\{1,2,3\}$, $\{1,2,4\}$ and $\{1,2,5\}$. The suborbital graph Γ_2 is connected, regular of degree 9 and has girth 3 since there is an edge between each of the vertices $\{1,2,3\}$, $\{1,4,5\}$ and $\{2,4,6\}$ while Γ_3 is disconnected, regular of degree 1 and has no cycles.

2.3 Suborbital graphs of $G = A_7$ acting on $X^{(3)}$ and their properties

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 4. These are:

 $Orb_{G_{\{1,2,3\}}}$ {1,2,3,} = {{1,2,3}} = Δ_0 , the trivial orbit.

 $Orb_{G_{\{1,2,3\}}}\{1,2,4\} = \{\{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,2,7\}, \{1,2,7\}, \{1,2,6\}, \{1,2,7\}, \{1,2,6\}, \{1,2,7\}, \{1,2,6\}, \{1,2,7\}, \{1,2,6\}, \{1,2,7\}, \{1,2,6\},$

{1,3,4}, {1,3,5}, {1,3,6}, {1,3,7}, {2,3,4}, {2,3,5}, {2,3,6}, {2,3,7}} = Δ_1 , which is the set of all unordered triples containing exactly two of 1, 2 and 3.

 $Orb_{G_{11,2,31}}$ {1,4,5}={{1,4,5}, {1,4,6}, {1,4,7}, {1,5,6},

 $\{1,5,7\}, \{1,6,7\}, \{2,4,5\}, \{2,4,6\}, \{2,4,7\}, \{2,5,6\}, \{2,5,7\}, \{2,6,7\}, \{3,4,5\}, \{3,4,6\}, \{3,4,7\}, \{3,5,6\}, \{3,5,7\}, \{3,6,7\}\}=\Delta_2$, which is the set of all unordered triples containing exactly one of 1, 2 and 3.

$$Orb_{G_{\{1,2,3\}}} \{4,5,6\} = \{\{4,5,6\}, \{4,5,7\}, \{4,6,7\}, \{5,6,7\}\} = \Delta_3$$

which is the set of all unordered triples containing neither 1 nor 2 nor 3.

The suborbital graph corresponding to Δ_0 is the null graph and therefore not very interesting.

By definition 1.9, Δ_1 , Δ_2 and Δ_3 are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs are undirected.

We construct Γ_1 , Γ_2 and Γ_3 as follows:

Let A and B be any two distinct unordered triples from $X=\{1,2,3,4,5,6,7\}$.

(i) The suborbital O_1 corresponding to the suborbit Δ_1 is

 $O_1 = \{ (g \{1,2,3\}, g\{1,2,4\}) \mid g \in G \}$

Therefore in Γ_1 , the suborbital graph corresponding to O_1 , there is an edge from vertex A to B if and only if $|A \cap B| = 2$.

(ii) The suborbital O₂ corresponding to the suborbit Δ_2 is O₂ ={ (g {1,2,3}, g{1,4,5}) | g \in G }.

Therefore in Γ_2 , the suborbital graph corresponding to O_2 , there is an edge from vertex A to B if and only if $|A \cap B| = 1$.

(iii) The suborbital O₃ corresponding to the suborbit Δ_3 is O₃ ={ (g {1,2,3}, g{4,5,6}) | g \in G }.

Therefore in Γ_3 , the suborbital graph corresponding to O_3 , there is an edge from vertex A to B if and only if $|A \cap B| = 0$.

These graphs are as shown in the Fig. 6, Fig. 7 and Fig. 8 below:

From the diagrams, we see that Γ_1 is regular of degree 12 and has girth 3 since there is an edge between each of the vertices {5,6,7}, {3,5,7} and {2,5,7}. The suborbital graph Γ_2 is regular of degree 18 and has girth 3 since there is an edge between each of the vertices {1,2,3}, {1,5,6} and {2,4,6} while Γ_3 is regular of degree 4 and has girth 7. Moreover Γ_1 , Γ_2 and Γ_3 are connected hence G acts primitively on X⁽³⁾.

REFERENCES

- Coxeter, H. S. M. 1986. *My graph*, Proceedings of London Mathematical Society 46: 117 – 135.
- [2]. Higman, D. G. 1964. *Finite permutation groups of rank* 3.Math.Zeitschrift 86: 145 156.
- [3]. Kamuti, I. N. 1992. Combinatorial formulas, invariants and structures associated with primitive permutation representations of PSL (2, q) and PGL (2, q). PhD. Thesis, University of Southampton, U.K.
- [4]. Neumann, P. M. 1977. Finite permutation groups Edge coloured graphs and matrices, edited by M. P. J. Curran, Academic Press, London.
- [5]. Petersen, J. 1898. Sur le. Theore'me de Tait Intermed Math 5: 225 – 227. Sims, C.C. 1967.Graphs and Finite permutation group.Math.Zeitschrift95: 76 -86.

Figure 6: The suborbital graph Γ_1 corresponding to the suborbit Δ_1 of G acting on $X^{(3)}$

Figure 7: The suborbital graph Γ_2 corresponding to the suborbit Δ_2 of G acting on $X^{(3)}$

Figure 8: The suborbital graph Γ_3 corresponding to the suborbit Δ_3 of G acting on $X^{(3)}$