Suborbital Graphs and their Properties for Unordered Triples in $\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{n}=\mathbf{5}, \mathbf{6}, 7)$ Through Rank and Subdegree Determination

Cedric W. Ndarinyo ${ }^{1}$ and Jane k. Rimberia ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Kenyatta University, P.O. BOX 43844-00100, Nairobi
${ }^{1}$ cedricndarinyo@rocketmail.com, ${ }^{2}$ janekagwiria@yahoo.com

Abstract

In this paper, through computation of the rank and subdegrees of alternating group $A_{n}(n=5,6,7)$ on unordered triples we construct the suborbital graphs corresponding to the suborbits of these triples. When $A_{n}(n \geq 5)$ acts on unordered pairs the suborbital graphs corresponding to the non-trivial suborbits are found to be connected, regular and have undirected edge except when $n=6$. Further, we investigate properties of the suborbital graphs constructed.

Mathematics Subject Classification: Primary 05E18; Secondary 05E30, 14N10, 05E15

Keywords- Rank, Subdegrees, Unordered Triple of an Alternating Group and Suborbital Graphs

I. PRELIMINARIES

A) Notation and Terminology

We first present some basic notations and terminologies as used in the context of graphs and suborbital graphs that shall be used in the sequel A_{n}-Alternating group of degree n and order $\frac{n!}{2} ;|G|$-The order of a group $G ; X^{(3)}$-The set of an unordered triples from set $X=\{1,2, \ldots, n\} ;\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$-Unordered triple;

Definition 1.1

A graph G is an ordered pair (V, E), where V is a non-empty finite set of vertices and E is a set of pairs of distinct vertices in G, called edges. A loop is an edge from a vertex to itself.

Definition 1.2

A multigraph is a graph which is allowed to have multiple edges, but no loops.

Definition 1.3

If $e=\{u, v\}$ is an edge of a graph G, then u and v are the end vertices of e, and we say u and v are adjacent in G. This relation is often denoted by $\mathrm{u} \sim \mathrm{v}$.

Definition 1.4

The degree or valency $d_{G}(v)$ of a vertex v of graph G is the
number of edges incident to v . A vertex of degree O is an isolated vertex. Graph G is the number of edges incident to v.

Definition 1.5

A walk of length k joining u and v in G is a sequence of vertices and edges of G of the form $\mathrm{v}_{0}, \mathrm{e}_{1}, \mathrm{v}_{1}, \mathrm{e}_{2}, \mathrm{v}_{2},---, \mathrm{v}_{\mathrm{k}-1}, \mathrm{e}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}}$, where $\mathrm{v}_{0}=\mathrm{u}, \mathrm{v}_{\mathrm{k}}=\mathrm{v}$ and $\mathrm{e}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right\}$ for $\mathrm{i}=1,2,---, \mathrm{k}$. A walk joining u and v is closed if $\mathrm{u}=\mathrm{v}$, and is a path if no two vertices of the walk (except possibly u and v) are equal; a closed path is called a circuit. Note that the edges $\mathrm{e}_{1},---, \mathrm{e}_{\mathrm{k}}$ will frequently be omitted from the definition of a walk.

Definition 1.6

A graph G is connected if every pair of vertices of G is joined by some path; otherwise, G is disconnected.

Definition 1.7

A graph D , or a directed graph consists of a finite non empty set $\mathrm{V}=\mathrm{D}(\mathrm{V})$ of vertices together with a collection of ordered pairs of distinct vertices of V .

Definition 1.8

Let G be transitive on X and let G_{x} be the stabilizer of a point $x \in X$. The orbits $\Delta_{0}=\{x\}, \Delta_{1}, \Delta_{2},---\Delta_{r-1}$ of G_{x} on X are called the suborbits of G. The rank of G is r and the sizes n_{i} $=\left|\Delta_{\mathrm{i}}\right|(\mathrm{i}=0,1,---, \mathrm{r}-\mathrm{i})$, often called the 'lengths' of the suborbits, are known as the subdegrees of G. Note that both r and the cardinalities of the suborbits $\Delta_{i}(i=0,1,---, r-1)$ are independent of the choice of $x \in X$.

Definition 1.9

Let Δ be an orbit of G_{x} on X. Define $\Delta^{*}=\{g x \mid g \in G$, $\mathrm{x} \in \mathrm{g} \Delta\}$, then Δ^{*} is also an orbit of G_{x} and is called the $\mathrm{G}_{\mathrm{x}}-$ orbit (or the G-suborbit) paired with Δ. Clearly $|\Delta|=\left|\Delta^{*}\right|$. If $\Delta^{*}=\Delta$, then Δ is called a self-paired orbit of G_{x}.

Theorem 1.10 [Wielandt 1964]

G_{x} has an orbit different from $\{x\}$ and paired with itself if and only if G has even order.

Observe that G acts on $X x X$ by $g(x, y)=(g x, g y), g \in G$, $x, y \in X$.

If $\mathrm{O} \subseteq \mathrm{X} \times \mathrm{X}$ is a G-orbit, then for a fixed $\mathrm{x} \in \mathrm{X}, \Delta=$ $\{y \in X \mid(x, y) \in O\}$ is a G_{x}-orbit.

Conversely if $\Delta \subseteq X$ is a G_{x}-orbit, then $\mathrm{O}=$ $\{(\mathrm{gx}, \mathrm{gy}) \mid \mathrm{g} \in \mathrm{G}, \mathrm{y} \in \Delta\}$ is a G-orbit on $\mathrm{X} \times \mathrm{X}$. We say that Δ corresponds to O . The G - orbits on X x X are called suborbitals. Let $\mathrm{O}_{\mathrm{i}} \subseteq \mathrm{X} \times \mathrm{X}, \mathrm{i}=0,1,---\mathrm{r}-1$ be a suborbital. Then we form a suborbital graph Γ_{i}, by taking X as the set of vertices of Γ_{i} and by including a directed edge from x to y ($\mathrm{x}, \mathrm{y} \in \mathrm{X}$) if and only if $(\mathrm{x}, \mathrm{y}) \in \mathrm{O}_{\mathrm{i}}$. Thus each suborbital O_{i} determines a suborbital graph Γ_{i}. Now $\mathrm{O}_{\mathrm{i}}{ }^{*}=$ $\left\{(x, y) \mid(y, x) \in O_{i}\right\}$ is a G-orbit.

Theorem 1.11 [Sims 1967]

Let $\Gamma_{\mathrm{i}}{ }^{*}$ be the suborbital graph corresponding to the suborbital $\mathrm{O}_{\mathrm{i}}{ }^{*}$. Let the suborbit $\Delta_{\mathrm{i}}(\mathrm{i}=0,1,---, \mathrm{r}-1)$ correspond to the suborbital O_{i}. Then Γ_{i} is undirected if Δ_{i} is self-paired and Γ_{i} is directed if Δ_{i} is not self-paired.

Theorem 1.12 [Sims 1967]

Let G be transitive on X. Then G is primitive if and only if each suborbital graph Γ_{i} ($\mathrm{i}=1,2,---, \mathrm{r}-1$) is connected.

Theorem 1.13 [Wielandt 1964]

Let G be transitive on X and let G_{x} be the stabilizer of the point $\mathrm{x} \in \mathrm{X}$. Let $\Delta_{0}=\{\mathrm{x}\}, \Delta_{1}, \Delta_{2},---, \Delta_{\mathrm{k}-1}$ be orbits of G_{x} on X of lengths $n_{0}=1, n_{1}, n_{2},--, n_{k-1}$, where $n_{0} \leq n_{1} \leq n_{2} \leq---\leq n_{k-1}$. If there exists an index $j>0$ such that $n_{j}>n_{1} n_{j-1}$, then G is imprimitive on X .

II. INTRODUCTION

In 1967, Sims [6] introduced suborbital graphs corresponding to the non-trivial suborbits of a group. He called them orbitals. In1977, Neumann [4] extended the work of Higman [2] and Sims [6] to finite permutation groups, edge coloured graphs and Matrices. He constructed the famous Peterson graph as a suborbital graph corresponding to one of the nontrivial suborbits of S_{5} acting on unordered pairs from the set $X=\{1,2,3,4,5\}$. The Peterson graph was first introduced by Petersen in 1898 [5]. In1992, Kamuti [3] devised a method for constructing some of the suborbital graphs of PSL $(2, q)$ and P GL $(2, q)$ acting on the cosets of their Maximal dihedral sub-groups of orders $q-1$ and $2(q-1)$ respectively. This method gave an alternative way of constructing the Coxeter graph which was first constructed by Coxeter in 1986[1]. In this paper, through computation of the rank and subdegrees of alternating group $A n(n=5,6,7)$ on unordered triples, we construct the suborbital graphs corresponding to the suborbits of these triples and further investigate properties of the suborbital graphs constructed.

A) SUBORBITAL GRAPHS OF $\boldsymbol{G}=\boldsymbol{A}_{\boldsymbol{n}}$ ACTING ON $\boldsymbol{X}^{(3)}$

In this section, we construct and discuss the properties of the suborbital graphs of $G=A n$ acting on $X^{(3)}$.

2.1 The suborbital graphs of $G=A_{5}$ acting on $X^{(3)}$

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 3 . These are:
$\operatorname{Orb}_{G_{[1,2,3\}}}\{1,2,3\}=,\{\{1,2,3\}\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{G_{\{1,2,3\}}}\{1,2,4\}=\{\{1,2,4\}, \quad\{1,2,5 \quad\},\{1,3,4\}, \quad\{1,3,5\}$, $\{2,3,4\},\{2,3,5\}\}=\Delta_{1}$, which is the set of all unordered triples containing exactly two of 1,2 and 3 .

$$
\operatorname{Orb}_{G_{[1,2,3\}}}\{1,4,5\}=\{\{1,4,5\}, \quad\{2,4,5\}, \quad\{3,4,5\}\}=\Delta_{2}, \text { which }
$$

is the set of all unordered triples containing exactly one of 1 , 2 and 3.

The suborbital graph corresponding to Δ_{0} is the null graph and therefore not very interesting.

By Definition 1.1.9, Δ_{1} and Δ_{2} are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs Γ_{1} and Γ_{2} are undirected.

We construct Γ_{1} and Γ_{2} as follows:
Let A and B be any two distinct unordered triples from $\mathrm{X}=$ $\{1,2,3,4,5\}$.
(i) The suborbital O_{1} corresponding to the suborbit Δ_{1} is

$$
\mathrm{O}_{1}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,2,4\}) \mid \mathrm{g} \in \mathrm{G}\} .
$$

Therefore in Γ_{1}, the suborbital graph corresponding to O_{1}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 2.
(ii) The suborbital O_{2} corresponding to the suborbit Δ_{2} is $\mathrm{O}_{2}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,4,5\}) \mid \mathrm{g} \in \mathrm{G}\}$. Therefore in Γ_{2}, the suborbital graph corresponding to O_{2}, there is an edge from vertex A to B if and only if $|A \cap B|=1$.

These graphs are as shown in the Fig. 1 and Fig. 2 below:
From the Fig. 1 and Fig. 2, we see that Γ_{1} is regular of degree 6 and has girth 3 since there is an edge between each of the vertices $\{1,2,4\},\{1,3,4\}$ and $\{2,3,4\}$. On the other hand, Γ_{2} is regular of degree 3 and has girth 5 since there is an edge between each of the vertices $\{1,2,3\},\{3,4,5\},\{1,2,4\},\{1,3,5\}$ and $\{2,4,5\}$. Moreover, Γ_{1} and Γ_{2} are connected, hence G acts primitively on $X^{(3)}$ by Theorem 1.3.

2.2 Suborbital graphs of $G=A_{6}$ acting on $X^{(3)}$ and their properties

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 4. These are:
$\operatorname{Orb}_{G_{\{1,2,3\}}}\{1,2,3\}=\{\{1,2,3\}\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{G_{\{1,2,3\}}}\{1,2,4\}=\{\{1,2,4\}, \quad\{1,2,5\}, \quad\{1,2,6\}, \quad\{1,3,4\}$, $\{1,3,5\},\{1,3,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\}\}=\Delta_{1}$, which is the set of all unordered triples containing exactly two of 1,2 and 3.
$\operatorname{Orb}_{G_{\{1,2,3\}}}\{1,4,5\}=\{\{1,4,5\}, \quad\{1,4,6\}, \quad\{1,5,6\},, \quad\{2,4,5\}$,
$\{2,4,6\},\{2,5,6\},\{3,4,5\},\{3,4,6\},\{3,5,6\}\}=\Delta_{2}$, which is the set of all unordered triples containing exactly one of 1,2 and 3.
$\operatorname{Orb}_{G_{\{1,2,3\}}}\{4,5,6\}=\{\{4,5,6\}\}=\Delta_{3}$, which is the set of all unordered triples containing neither 1 nor 2 nor 3 .

The suborbital graph corresponding to Δ_{0} is the null graph and therefore not very interesting.

Figure 1: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of G acting on $X^{(3)}$

Figure 2: The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of G acting on $X^{(3)}$

By Definition 1.1.9, Δ_{1}, Δ_{2} and Δ_{3} are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs are undirected.

We construct Γ_{1}, Γ_{2} and Γ_{3} as follows;
Let A and B be any two distinct unordered triples from $X=\{1,2,3,4,5,6\}$.
(i) The suborbital O_{1} corresponding to the suborbit Δ_{1} is $\mathrm{O}_{1}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,2,4\}) \mid \mathrm{g} \in \mathrm{G}\}$.
Therefore in Γ_{1}, the suborbital graph corresponding to O_{1}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 2.
(ii) The suborbital O_{2} corresponding to the suborbit Δ_{2} is $\mathrm{O}_{2}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,4,5\}) \mid \mathrm{g} \in \mathrm{G}\}$.
Therefore in Γ_{2}, the suborbital graph corresponding to O_{2}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 1.
(iii) The suborbital O_{3} corresponding to the suborbit Δ_{3} is $\mathrm{O}_{3}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{4,5,6\}) \mid \mathrm{g} \in \mathrm{G}\}$.
Therefore in Γ_{3}, the suborbital graph corresponding to O_{3}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 0 .

These graphs are as shown in the Fig. 3 and Fig. 4 below:

Figure 3: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of G acting on $X^{(3)}$

Figure 4: The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of G acting on $\mathrm{X}^{(3)}$

Figure 5: The suborbital graph Γ_{3} corresponding to the suborbit Δ_{3} of G acting on $X^{(3)}$

From the diagrams, we see that Γ_{1} is connected, regular of degree 9 and has girth 3 since there is an edge between each of the vertices $\{1,2,3\},\{1,2,4\}$ and $\{1,2,5\}$. The suborbital graph Γ_{2} is connected, regular of degree 9 and has girth 3 since there is an edge between each of the vertices $\{1,2,3\}$, $\{1,4,5\}$ and $\{2,4,6\}$ while Γ_{3} is disconnected, regular of degree 1 and has no cycles.
2.3 Suborbital graphs of $G=A_{7}$ acting on $X^{(3)}$ and their
properties

The number of orbits of $G_{\{1,2,3\}}$ acting on $X^{(3)}$ is 4. These are:
$\operatorname{Orb}_{G_{[1,2,3\}}}\{1,2,3\}=,\{\{1,2,3\}\}=\Delta_{0}$, the trivial orbit.
$\operatorname{Orb}_{G_{\{1,2,3]}}\{1,2,4\}=\{\{1,2,4\}, \quad\{1,2,5\}, \quad\{1,2,6\}, \quad\{1,2,7\}$, $\{1,3,4\},\{1,3,5\},\{1,3,6\},\{1,3,7\},\{2,3,4\},\{2,3,5\},\{2,3,6\}$, $\{2,3,7\}\}=\Delta_{1}$, which is the set of all unordered triples containing exactly two of 1,2 and 3 .
$\operatorname{Orb}_{G_{[1,2,3\}}}\{1,4,5\}=\{\{1,4,5\}, \quad\{1,4,6\}, \quad\{1,4,7\}, \quad\{1,5,6\},$, $\{1,5,7\},\{1,6,7\},\{2,4,5\},\{2,4,6\},\{2,4,7\},\{2,5,6\},\{2,5,7\}$, $\{2,6,7\},\{3,4,5\},\{3,4,6\},\{3,4,7\},\{3,5,6\},\{3,5,7\}$, $\{3,6,7\}\}=\Delta_{2}$, which is the set of all unordered triples containing exactly one of 1,2 and 3 .
$\operatorname{Orb}_{G_{\{1,2,3]}}\{4,5,6\}=\{\{4,5,6\}, \quad\{4,5,7\}, \quad\{4,6,7\}, \quad\{5,6,7\}\}=\Delta_{3}$ which is the set of all unordered triples containing neither 1 nor 2 nor 3 .

The suborbital graph corresponding to Δ_{0} is the null graph and therefore not very interesting.

By definition 1.9, Δ_{1}, Δ_{2} and Δ_{3} are self-paired. Hence by Theorem 1.11, their corresponding suborbital graphs are undirected.

We construct Γ_{1}, Γ_{2} and Γ_{3} as follows:
Let A and B be any two distinct unordered triples from $X=\{1,2,3,4,5,6,7\}$.
(i) The suborbital O_{1} corresponding to the suborbit Δ_{1} is
$\mathrm{O}_{1}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,2,4\}) \mid \mathrm{g} \in \mathrm{G}\}$
Therefore in Γ_{1}, the suborbital graph corresponding to O_{1}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 2.
(ii) The suborbital O_{2} corresponding to the suborbit Δ_{2} is $\mathrm{O}_{2}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{1,4,5\}) \mid \mathrm{g} \in \mathrm{G}\}$.
Therefore in Γ_{2}, the suborbital graph corresponding to O_{2}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 1.
(iii) The suborbital O_{3} corresponding to the suborbit Δ_{3} is $\mathrm{O}_{3}=\{(\mathrm{g}\{1,2,3\}, \mathrm{g}\{4,5,6\}) \mid \mathrm{g} \in \mathrm{G}\}$.
Therefore in Γ_{3}, the suborbital graph corresponding to O_{3}, there is an edge from vertex A to B if and only if $|A \cap B|=$ 0 .

These graphs are as shown in the Fig. 6, Fig. 7 and Fig. 8 below:

From the diagrams, we see that Γ_{1} is regular of degree 12 and has girth 3 since there is an edge between each of the vertices $\{5,6,7\},\{3,5,7\}$ and $\{2,5,7\}$. The suborbital graph Γ_{2} is regular of degree 18 and has girth 3 since there is an edge between each of the vertices $\{1,2,3\},\{1,5,6\}$ and $\{2,4,6\}$ while Γ_{3} is regular of degree 4 and has girth 7 . Moreover Γ_{1}, Γ_{2} and Γ_{3} are connected hence G acts primitively on $X^{(3)}$.

REFERENCES

[1]. Coxeter, H. S. M. 1986. My graph, Proceedings of London Mathematical Society 46: 117-135.
[2]. Higman, D. G. 1964. Finite permutation groups of rank 3.Math.Zeitschrifl 86: 145-156.
[3]. Kamuti, I. N. 1992. Combinatorial formulas, invariants and structures associated with primitive permutation representations of $\operatorname{PSL}(2, q)$ and $P G L(2, q)$. PhD. Thesis, University of Southampton, U.K.
[4]. Neumann, P. M. 1977. Finite permutation groups Edge coloured graphs and matrices, edited by M. P. J. Curran, Academic Press, London.
[5]. Petersen, J. 1898. Sur le. Theore'me de Tait Intermed Math 5: 225 - 227. Sims, C.C. 1967.Graphs and Finite permutation group.Math.Zeitschrift95: 76-86.

Figure 6: The suborbital graph Γ_{1} corresponding to the suborbit Δ_{1} of G acting on $X^{(3)}$

Figure 7: The suborbital graph Γ_{2} corresponding to the suborbit Δ_{2} of G acting on $X^{(3)}$

Figure 8: The suborbital graph Γ_{3} corresponding to the suborbit Δ_{3} of G acting on $X^{(3)}$

