
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 43

Comparative Analysis of Basic CPU Scheduling

Algorithms

Sajida Fayyaz
1
, Hafiz Ali Hamza

2
, Saria Moin U Din

3
 and Ehatsham Riaz

4

1-4
Department of Computer Science, University of Lahore (Sargodha Campus)

1
sajida.fayyaz@cs.uol.edu.pk,

2
alihamzagondal12@yahoo.com,

3
saira.moin@cs.uol.edu.pk,

4
ehatshamriaz@gmail.com

Abstract– Computer science is all about processes and commands

running parallel. In computer, the processor CPU (Central

Processing Unit) may contain different cores or single core and

one core handle one process at a time. Running of processes in

parallel pattern may reduce the context switching because while

process running in CPU interrupt will occur. During context

switching CPU switch to other process and put the current

process in waiting queue the time required for CPU to save the

current process and load the next process is context switching

time. While loading the next process for execution from ready

queue the CPU required some sort of algorithms on the basis of

which system decide. We include the discussion on such

scheduling algorithms with respect to their response time, wait

time and turnaround time. The objective of this paper is to

examine the all CPU scheduling algorithms including First come

First Serve (FCFS), Shortest Job First (SJF), Priority and Round

Robin (RR) algorithms. After inspecting the simulation result

using number of examples, we have to select the best algorithm

for CPU scheduling. As main purposes of scheduling is to keep

CPU busy every Jiff of a second so that processes don’t have to

wait much longer. While talking about Round Robin algorithms

we have three different approaches working, which are Round

Robin with (FCFS, SJF and Priority). We will also examine

Round Robin with all these approaches and figure out which

approach for Round Robin algorithm work more efficiently and

did maximum utilization of CPU. Main motive of this paper is to

maximize CPU utilization and decrease the average wait time

and average turnaround time so we have to find the best serving

algorithm to achieve this goal.

Keywords– CPU Scheduling, Process, Scheduling Algorithms,

Comparison, Wait Time, Burst Time, Gant Chart Turnaround

Time and Response Time

I. INTRODUCTION

n present time modern system use many resources like one

or more processor, input output devices, main memory and

many other system resources which combined to form a

complex system. These complex resources can have to

manage through some supervisor which can control and

manage all the resources of Computer. This supervisor is

operating system (OS). In [7] Andrew explores that OS run

processes in two different modes that are kernel mode and

user mode, operating system tasks includes the allocation of

resources to different processes. Processes are actually

programs in running form. They normally started by user or

system itself. Allocation of resources means that there are

some processes who want to use the CPU to complete their

task so operating systems allocate them CPU one by one.

In present time systems don’t use traditional CPU

programming but multiprogramming technique. In [2] M.

Sindhu defined that the CPU is unique and crucial computer

resource CPU consist of different cores on the basis of these

number of cores the processors are categorized. Every core

have some nonvolatile memory attached to it for faster access

of data called caches memory. When we talk about process it

contains many threads (light wait process) a thread cannot

exist outside a process. Thread example includes that when

we run a simple Microsoft word application it perform

number of task at the back end, while we are typing it

simultaneously checking the spellings and also auto-saving

document etc. if we don’t have this multithreading concept

then in above example while system is saving the document it

is unable to read key strokes.

After creation a process can be in different states which are

new, running, waiting, ready and terminated. When a process

created it’s in new state, when the process is being executed

it’s in running form, when it is waiting for some reason it’s in

waiting state and when process is ready and waiting for CPU

at that time process is in ready state and when process had

completed its task and exit the CPU it’s in terminated state.

There are several queues that separate out the processes from

each other are job queue, waiting queue and ready queue in

job queue all the processes which are created rest there. Some

processes have to wait for some event to happen it can be any

resource allocation just in case if resource is busy with any

other process. These processes remain in waiting queue. Some

processes are ready they just need CPU to get executed and

Complete their task, those processes stay in ready queue. In

multithreading several processes kept in ready queue which

wait for CPU to get done with current process. In his work [1]

H. Arora says that when any process wait for any I/O device

or any other system interrupt the operating system get CPU

back from that process and assigned other process.

In old uniprogramming environment one process run at a

time and if that process has to wait for any reason CPU

remain idle scheduling algorithms use to maximize the CPU

utilization because CPU remaining idle is not a good

approach. CPU algorithms keep track of processes and

arrange them in ready queue so that they get executed when

CPU finished with current working process.

In [1] Arora suggested that pipe lining concept can be used

in CPU scheduling. As CPU fetch, decode and execute the

I

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 44

process which take time while CPU is fetching the process the

decoding and executing cores are free after implementing pipe

lining when CPU will be busy in fetching the process the

decoding and execution or old processes can take place. This

can make more efficient CPU utilization.

When some processes that invoke at same interval or may

be at different time interval and they are in ready queue.

Where these processes are waiting for CPU to get executed.

Here an issue arise which process have to execute first and

which is to second, for this purpose we implement scheduling.

In [6] Abraham Silberschatz concluded that scheduling is

most important job of an operating System our Operating

system have two types of schedulers which are short-term

scheduler (CPU scheduler) and long-term scheduler (Job

scheduler). In [8], [2] A. Silberschatz and M. Sindhu say that

short-term scheduler decide which processes should executed

next and assign CPU and long-term scheduler decide which

job is ready enough to brought in to ready queue. Short-term

scheduler is very fast while long-term scheduler is slow.

When Short term scheduler bring ready processes to CPU

dispatcher invoke here and do context switching which

includes saving current process and starting the new process.

We do scheduling by different CPU scheduling algorithms.

Algorithms are finite set of rules which are used to get desire

output. Different scheduling algorithm has different

properties. Mainly we have four types of CPU scheduling

algorithms which are First come first serve, shortest job first,

priority and Round Robin. Optimization criteria for these

CPU scheduling algorithms includes Maximize CPU

utilization, Maximize throughput, minimize starting time,

wait time and turnaround time. On the basis of properties

every algorithm produces different result.

 Now we have to figure out which algorithm is more

efficient for CPU scheduling, for this purpose we have to

compare the below mention algorithms with respect to their

Response, turnaround and wait time. In [8]-[11], A.

Silberschatz, S. A. Tanenbaum, and P.Kokkinsis says that

algorithms are primitive and non-preemptive, Non-primitive

algorithms are such algorithms which once acquire CPU they

only release it when they complete their job while in primitive

scheduling CPU switched to better option like when a process

of low priority which high burst time is using the CPU and a

process arrives which high priority short term scheduler

switch the CPU to high priority process. In this case context

switching time can be high. When we talk about burst time

it’s the total execution time of any process, and the arrival

time is the time interval when a process arrive in the ready

queue. In [8], [2], [13] A. Silberschatz, M. Sindhu and S.

Shah explores that In primitive CPU scheduling dispatcher is

use for the switching processes between CPU, it can save the

current state or progress of Process and load the current

progress of next process from memory it must be very fast

because it can reduce context switching time.

II. RELATED WORK

CPU scheduling in important task in modern

multiprogramming system. For this purpose many algorithm

can be used. Some of them are discussed above. In [20] C.L.

LIU says those researchers are continuously trying to increase

the efficiency of these algorithms, by comparing them and

adding new techniques, and combining two algorithms also.

In [18] Neetu Goel use diagrams description of different CPU

scheduling algorithm. In their paper they present different

state diagrams to make comparison between different

algorithms using for single processor system and drive the

result for best CPU scheduling algorithm by different

examples. In [19] Y.A. Adekunle as compare different

algorithms in the basis of six parameters which are (wait time,

response time, throughput, fairness, CPU utilization,

starvation, preemption, and predictability) he concluded his

work as there is a lot of need is to be worked on these

algorithms.

In [4] N Kumar has proposed a new algorithm, which uses

SJF and priority algorithm’s properties with round robin CPU

scheduling algorithm. Priority is intended on the foundation

of SJF and quantum time. It keep the advantages and the

properties of Simple Round Robin and decreases starvation

and also mixes the benefit of priority scheduling algorithms.

In his paper the proposed algorithm assign new priorities to

the processes using SJF and quantum time. In [3] author

mixed the proprieties of priority algorithm with round robin,

he proposed the new idea as the reassigning the priorities

according to remaining execution time of processes in round

two, in round one processes are executed in assigned

priorities.

In [12] P K Mittal analyzed the traditional Round Robin

which result in longest wait time and a lot of context

switching due to static quantum time. In his paper he

proposed a new algorithm EDRR (Efficient Dynamic Round

Robin) in which he uses SJF instead of FCFS and uses

dynamic time quantum rather than static one, he has generated

new quantum time using mean and median of burst time as

different formulas, he concluded this with different testing

results that is EDRR is more efficient.

III. COMPARISON PARAMETERS

Comparison of different algorithms can be done on

different criteria which have different units. After comparison

we are able to define the properties of different CPU

scheduling algorithms, A CPU scheduling algorithm’s

efficiency will be depend on its average response time,

Average wait time and average turnaround time.

A) Response Time

Response time is the time period taken by an algorithm to

response for the very first time to a process. When a process

arrives in the ready queue it sort according to different criteria

Fig. 1. Pipe Lining in CPU

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 45

which can be based on different scheduling algorithms. Then

the processes have to wait form the CPU allocation so that

they can complete their task. In [6] Abraham Silberschatz

defined an Equation for Response Time.

Response Time = 1
st
 start Time - arrival Time (1)

B) Wait Time

The time period which is tagged as wait time of a process is

total time which a process spend in ready queue waiting for

CPU it also include response Time, wait time of a process

depend on the scheduling algorithms its mostly high in First

come First serve algorithm as the high aged processes have to

execute as the arrive earlier and the short age process which

arrive after them have to wait. In [6] Abraham Silberschatz

defined an equation for wait time.

Wait Time = (1st start Time – arrival Time) + (2nd Start Time

– First end Time) +...+ (nth Start Time – (n-1)th end Time)

(2)

In [17] Kumar Saroj has suggested an equation for average

wait time.

Average Waiting Time (AWT) ={ΣWTj}/n

Here, WTj is the waiting time of j
th

 process and n is over-all

number of processes.

C) Turnaround Time

Turnaround time is the total age of a Process which it spend

in the ready queue and in CPU, simple turnaround time is

Sum of wait time and execution time of a process. Execution

time is considered as the time when CPU is allocated to that

particular process and the process is performing its task. In [6]

Abraham Silberschatz defined an equation for computing

turnaround time.

Turnaround Time = Finish Time – arrival Time (3)

In [17] Kumar Saroj has suggested an equation for average

turnaround time.

Average Turnaround Time (ATAT) = {ΣTATj}/n

Here, TATj is the turnaround time of j
th

 process and n is

over-all number of processes.

D) Efficiency

In general efficiency is when an algorithm performs

maximum utilization of CPU. In [6] Abraham Silberschatz

says that CPU utilization can be defined in parentage 0 to 100,

in real system mostly system are utilizing CPU up to 40% and

highly loaded system can utilize up to 90%. Efficiency can be

drawn as the main goal which is to increase the throughput

and decrease the wait Time of process also decrease the

response time.

IV. METHODOLOGY

In modern system there are multicore processors which are

executing multi processes at a time using context switching.

These processes are scheduled by different CPU scheduling

algorithms, which are further discussed below, we are making

comparisons between these algorithms with respect to their

average wait time, response time, and turnaround time. While

comparing the result of different algorithms we used bar chart

to clearly scan out the best CPU scheduling algorithm.

A) First-Come _ First-served Algorithm for Scheduling

This is a simple algorithm use for scheduling CPU

Processes. In [1] Himanshi Arora say the FCFS is the

algorithm in which processes get executed according to their

arrival in ready queue. Ready queue is a place where those

process stay, that are ready for execution and waiting for CPU

allocation, in FCFS scheduling the concept of queue is used

which is FIFO (First in first out) which means sequence of

execution based on arrival time of processes. When a process

is created and it brought up in ready queue by long term

scheduler, if CPU is idle the Short Term scheduler directly

allocated it to that process in spite of its long burst Time, In

this case short age processes have to wait for if a higher age

processed is currently executing which result in higher wait

time according to [2] by M. Sindhu. As you know our main

focus is to reduce the wait time and increase through Put.

When we use same processes with ascending order with

respect to burst time it produce different result. Waiting for

larger burst time process to finish cause convoy affect which

the process of short burst time have to wait. We take an

example for FCFS CPU scheduling algorithm.

Table I: FCFS Input Parameters

Process Name Arrival Time Burst Time

P1 0.0 20

P2 1.0 6

P3 2.0 3

In Table I there are three processes which arrive in ready

queue as shown FCFS is non primitive algorithms. So in this

case once CPU is allocated to a process it have to complete its

task before releasing the CPU.

 Steps of execution of FCFS

1. P1 arrives first and the short term scheduler allocate

CPU to P1,

2. P2 arrives in ready queue after P1 and P1 have to wait for

P2 to complete its execution and free the CPU.

3. Then P3 arrives and it also has to wait for CPU to get

wakened.

4. When P1 releases the CPU, P2 start execution and after

this P3 start its execution and complete its task.

Gant chart

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 46

Fig. 2. FCFS Processes Sequence (1st case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (0-0)+(20-1)+(26-2)

Total Wait Time = 43

Average Wait Time= 14.33

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (20-0)+(26-1)+(29-2)

Total Turnaround Time =72

Average Turnaround Time= 24

Suppose these processes arrive in reverse order P3, P2, P1.

Then calculation result had notified change in wait time, and

turnaround Time also. Let’s take a look in this matter.

Gant chart

Fig. 3. FCFS Processes Sequence (2nd case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (0-0)+(3-1)+(9-2)

Total Wait Time = 10

Average Wait Time= 3.33

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (3-0)+(9-1)+(29-2)

Total Turnaround Time =38

Average Turnaround Time= 12.66

Analyzing above Cases:

In Fig. 1 we can see that there is a lot of difference in wait

time and turnaround time just because we are executing the

process in different order. This changing order will increase

the optimization criteria which is it is decreasing the wait time

and turnaround time.

Fig. 4. FCFS 1st case vs 2nd case

B) Priority Algorithm for Scheduling

In [14], [15], [16] R. Matarnesh, J.Lakma and Md. A. F.

AlHusainy says that Priority is the importance of any process

for example many processes are running and a new process

invoke with the job to display an message about system error

which if delayed can cause data lost it have the highest

priority now short term scheduler have to pick this process

and assign CPU and move the current working process to

Ready Queue if not completed. Priority based algorithm is

quite agreeable as it better than First come first served

algorithm as operating system attached a priority bit with each

process on the basis of which process get executed. This

priority bit can be decided on the basis of many parameters

(e.g., load, resources, and importance). Priority bit is an

integer value which attached to a process if this integer value

is low then priority is high if the bit value is high the priority

is low. Priority algorithm can be primitive like if a process

with high priority arrives the short term scheduler switched

the CPU between them or non-primitive in which either a

process with high priority arrives the current process only

release CPU only if it had completed its job. Let’s take a look

by an example

Table II: Priority Input Parameters

Process Name Arrival Time Burst Time Priority

P1 5 10 1

P2 0 6 5

P3 3 8 4

In Table II there are three processes which arrive in ready

queue at different time interval with different priority and

have different burst times.

1
st
 case: Steps of execution of priority algorithms

1. P2 arrives at 0 as it has the lowest priority but in this

context it is the only process which arrive at this time

interval so short term scheduler allocate CPU to P2.

2. As this is non-primitive case so once the CPU is

allocated it only releases when job is done so as P2 has

finished its job P1 and P3 arrives in ready queue.

3. Then short term scheduler decides on the basis of

priority, P1 have highest priority then P3. So CPU is

allocating to P1 and after its job completion CPU is

allocate to P3.

0

10

20

30

First Case 2nd Case

FCFS

Wait Time Turnaround Time

P
1
 P

3
 P

1

26 20 29 0

P
1
 P

2
 P

3

26 20 29 0

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 47

 Gant Chart

Fig. 5. Priority Processes sequence (1st case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (6-5)+(0-0)+(16-3)

Total Wait Time = 14

Average Wait Time= 4.66

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (16-5)+(6-0)+(24-3)

Total Turnaround Time =38

Average Turnaround Time= 12.66

2
nd

 Case: Steps of execution of priority algorithms

1. Same like above mention case CPU is allocated to P2

as it arrives at 0.

2. After starting execution short term scheduler keep

looking for the highest priority process in ready queue

then the current executing process because of primitive

case.

3. When P3 with the priority higher than the current

executing process arrive short term scheduler allocate

the CPU to P3. as P2 has not finish its job yet, so it have

to save the current progress and again sent to ready

queue this task is done by dispatcher. Which just

invoke and perform the task and disposed.

4. When P1 arrives CPU is allocated to P1 which is of

high priority and P3’s progress is saved and then sends

in ready queue for wait. Now P1 complete its job and

free CPU

5. Now dispatcher Load the P3 And short term scheduler

allocate CPU to P3 when it complete its Job CPU is

allocated to P2.

Gant Chart

Fig. 6. Priority processes sequence (2st case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (5-5)+(0-0)+(21-3)+(3-3)+(15-5)

Total Wait Time = 28

Average Wait Time= 9.33

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (15-5)+(24-0)+(21-3)

Total Turnaround Time =52

Average Turnaround Time= 17.33

Analyzing above Cases:

In above mention cases of priority scheduling algorithm

same example is solved by primitive and non-primitive

method and there is a clear difference let’s observe it through

bar chart showed in Fig. 7.

Fig. 7. Priority 1st case Vs 2nd case

As we know over main goal is to minimize the average wait

time and average turnaround time, so we can clearly see that

through primitive way wait time is increasing as wait time

increases the turnaround time also increases.

In Priority scheduling algorithm the processes of low

priority get ignored by CPU as the processes of high priority

bombarded and CPU remain busy with them [2] so process

suffer from starvation. This problem can be solved by

increasing the Priority bit of process by fix interval of time

and this method is called ageing. Through this every process

got the turn to execute either if it had a lowest priority at the

arrival.

C) Shortest-Job First Algorithm for scheduling

In SJF procedure processes are places in ready queue.

Where short term scheduler assign CPU to them and the get

executed on the base of their age or execution time called the

burst time. In [2] M. Sindhu says that in SJF the process

which have less execution time got executed first. Short term

scheduler places the processes with the smallest burst time in

head of the queue and lengthiest burst time in tail of the

queue. In [16] Md. A. F. AlHusainy declares that SJF CPU

scheduling algorithm can be primitive or non-primitive, in

primitive case when best job that has the short burst time get

in ready queue dispatcher switched the CPU to the new best

coming job, and after its completion the next choice can be

made by short term scheduler using above criteria. Let’s take

look through an example.

0

10

20

1st case 2nd case

Priority

AVG Wait Time AVG Turnaround Time

P
2
 P

3

2

P
2

3 24 5 0

P
3

15 21

P
1

P
3
 P

1

2

P
2

16 6 24 0

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 48

Table III: SJF Input Parameters

Process Name Arrival Time Burst Time

P1 5 10

P2 0 9

P3 2 6

P4 3 4

In Table III there are four processes (P1, P2, P3, and P4) with

different burst times and different arrival times available.

1
st
 case: steps of execution shortest job first

1. P2 arrives at 0 in this context and short term scheduler

allocates CPU to it as there is no other best option.

2. As this is a non-primitive case so CPU get free only

when Job is Done so as soon as P2 finished other all

processes are arrived in ready queue.

3. Now short term scheduler decide which Job got least

burst time, and in this example P4 will get the CPU.

4. After P4, P3 and then P1 will got CPU to complete its

job.

Gant Chart

Fig. 8. SJF processes sequence (1st case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (19-5)+(0-0)+(13-2)+(9-3)

Total Wait Time = 31

Average Wait Time= 7.75

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (29-5)+(9-0)+(19-2)+(13-3)

Total Turnaround Time =60

Average Turnaround Time= 15

2
nd

 case: steps for execution Shortest job first

1. In this context P2 arrives at 0 so CPU is allocated to it,

2. At 2 P3 arrives and the remaining burst time of P2 is

greater than P3 so Dispatcher do context switching, and

CPU is now assigned to P3.

3. Then At 3 P4 arrives same as above CPU switched to it,

then P1 arrives but it have larger burst time then P4 so

CPU remain allocated to P4.

4. Once P4 Complete its Job short term scheduler

allocated CPU to shortest Job which is P2 and then P1.

Gant chart

Fig. 9. Priority processes sequence (2st case)

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (19-5)+[(0-0)+(12-2)]+[(2-2)+(7-3)]+(3-3)

Total Wait Time = 28

Average Wait Time= 7

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (29-5)+(19-0)+(12-2)+(7-3)

Total Turnaround Time =57

Average Turnaround Time= 14.25

Analyzing above Cases:

In above mention cases of shortest job first CPU scheduling

algorithm which are primitive and non-primitive let’s find out

which case decreases the waits time or turnaround time

through bar chart.

Fig. 10. Priority 1st case Vs 2st case

As we can see that in shortest job first primitive scheduling

is more useful as it produce low wait time. In [18] Goel, N

concluded that shortest job first algorithm is not well and

efficient for processes with long burst time because in SJF

short job executes first and this can cause long waiting time

for these processes.

D) Round-Robin Algorithm for Scheduling

In R_R (Round Robin) procedure a fixed interval of time in

given to processes to get executed by CPU that time is called

quantum time it’s mostly 10-100ms. In [19] Adekunle, Y.A.

says that If quantum time is low then context switching

should be high, and if quantum time is very large it can cause

increase in response time. When that fix unit time completed

CPU switched to other process further more using R_R

0

5

10

15

20

1st case 2nd case

SJF

AVG Wait Time AVG Turnaround Time

P
1
 P

2
 P

2

29 2 7 0

P
3

12 19

P
3

3

P
4

P
1
 P

3
 P

2

19 9 29 0 13

P
4

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 49

operating system can use FCFS as primary approach as well

as SJF and Priority. In [6] Abraham Silberschatz says that A

basic advantage of RR is its fairness because every process

get equal amount of CPU time, like if there are n processes in

the ready queue and the time quantum is q, then each process

gets 1/n of the CPU time in portions of at most q time units at

once. Every process can wait for (n-1)q time units not more

than this.

In RR scheduling algorithm Short term scheduler use

different sub algorithms to select a process from ready queue,

it can be FCFS, SJF or priority, and quantum time can be

fixed or dynamic let’s take a look by example.

Table IV: RR Input Parameters

Process Name Arrival Time Burst Time Priority

P1 2 5 3

P2 0 10 1

P3 4 15 5

P4 1 20 2

P5 3 25 4

In Table IV there are five processes (p1, p2, p3, p4, p5) with

different arrival time, burst time and priority. And the

quantum Time is 10ms. Let’s see the sequence of process

execution by Gant charts

RR with first come first serve

Fig. 11. RR (FCFS) processes Sequence

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (20-2)+(0-0)+[(35-4)+(65-45)]+[(10-

1)+(45-20)]+[(25-3)+(55-35)+(70-45)]

Total Wait Time = 180

Average Wait Time= 36

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (25-2)+(10-0)+(70-4)+(55-1)+(75-3)

Total Turnaround Time =225

Average Turnaround Time= 45

RR with Shortest Job First

Fig. 12. RR (SJF) processes Sequence

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (10-2)+(0-0)+[(15-4)+(45-25)]+[(25-

1)+(50-35)]+[(35-3)+(60-45)]

Total Wait Time = 125

Average Wait Time= 25

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (15-2)+(10-0)+(50-4)+(60-1)

Total Turnaround Time =205

Average Turnaround Time= 41

RR with Priority scheduling

Fig. 13. RR (Priority) processes Sequence

Calculation

Wait Time = start time – arrival Time

Total Wait Time= (20-2)+(0-0)+[(35-4)+(65-45)]+[(10-

1)+(45-20)]+[(25-3)+(55-35)+(70-65)]

Total Wait Time = 150

Average Wait Time= 30

Total Turnaround Time= Finish Time – arrival Time

Total Turnaround Time= (25-2)+(10-0)+(70-4)+(55-1)+(75-3)

Total Turnaround Time =225

Average Turnaround Time= 45

Analyzing above Cases:

In above mention example of Round Robin scheduling

algorithm with FCFS, SJF and priority we can see the

variation in wait time and turnaround time so by analyzing

this we can decide which approach is best for round robin

CPU scheduling algorithm,

P
3
 P

4
 P

2

10 75 0

P
4
 P

5
 P

5
 P

1
 P

5
 P

3

20 25 35 45 55 65 70

P
5
 P

3
 P

2

10 75 0

P
1
 P

4
 P

5
 P

3
 P

4
 P

5

15 25 35 45 50 60 70

P
3
 P

4
 P

2

10 75 0

P
4
 P

5
 P

5
 P

1
 P

5
 P

3

20 25 35 45 55 65 70

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 50

Fig. 14. Comparison of RR (FCFS), RR (SJF) and RR (priority)

Our main goal behind the CPU scheduling is to reduce the

average wait time and average turnaround time and increase

throughput, by above graph we can analyze the Round Robin

with Shortest Job First approach is more useful than FCFS

and priority.

 In [4] N Kumar explores that in R_R SJF Operating system

select the process which has shortest job and allocate CPU for

one unit time called quantum time after accomplishment of

single time quantum, match the time quantum with the

remaining processes burst time if remaining burst time is less

than or equal to time quantum assigns the same process again.

Else repeat.

As we know simple R_R algorithm as several drawbacks

(e.g., low throughput, high wait time) which can be

minimized using different approaches. In [3] Rajput, I.S.

suggested that operating system can use old fashion Round

Robin with Priority Bit Concept which Help it to increase

throughput, as unit time can be allocated to processes on the

base of priority bit attached with processes. After one

complete cycle processors are arranged in increasing order or

their remaining CPU burst time in the ready queue. New

priorities are assigned according to the remaining CPU bursts

of processes. The process with shortest remaining CPU burst

is assigned with highest priority. With this concept processes

got new priority after every cycle then no need of ageing.

E) Experimental Setup

In Table V the average Wait time, response Time and the

turnaround time is computed using self-created simulation in

Object Oriented Programming Language JAVA. In which we

Use a CPU for execution of processes, and number of

processes can be used for each scheduling are dynamic but we

mostly uses five processes in each case as a sample size. The

processes burst time, arrival time and priorities was already

defined before submission for execution and calculation of

wait time, response time, and turnaround time. Quantum time

is also already defined.

V. SIMULATION RESULTS

The environment in which these simulation take place is a

single CPU system, and burst times and priorities are fixed

and already known, quantum time used in Round Robin

algorithm is static and in milliseconds. While performing

number of examples using different algorithms which are

(FCFS, SJF, Priority, RR (FCFS), RR (SJF), RR (Priority).

These results are coated below where Table V is result of

response time, Table VI is result of wait time, Table VII is

turnaround time. E stands For Example.

Table V: CPU scheduling Algorithms Average Response Time

Examples E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10 AVG

FCFS 6.4 10 12.6 12.8 4.4 11.6 3.2 9 3 10.4 8.34

Priority 8.6 9.2 13.4 12.4 8.8 10 3.2 9.6 4 10 8.92

SJF 4.8 8.2 9.6 11 4 8 2.4 8.8 3 9 6.88

RR (FCFS) 3.8 5.6 5.8 6.4 3.4 7.4 3.2 5.6 2.8 3.6 4.76

RR(Priority) 5 7.5 5.8 6.4 4.6 7.4 3.2 5.6 3.2 3.2 5.19

RR(SJF) 4.2 6.6 5.8 6.4 3.4 7 2.6 5.6 2.8 3.2 4.76

In Table V there are ten different examples including 5

processes each with different burst times, different arrival

time, and for priority scheduling different priorities, used, in

Table V we have average response times for each example

using different algorithms which are FCFS, SJF, Priority, and

Round Robin (FCFS, SJF, and Priority).

In Fig. 15, we can analyze the response time of these

examples and pull a result which algorithm is more useful in

decreasing response time. As we now every algorithm has

different properties due to which we have verities of results

but round robin algorithm has produced low response time,

which means that every process got CPU for the first time in

less Time.

Fig. 15. Comparison of Response time

In Table V we have ten different examples which are solved

by 6 different algorithms. In Table V the values are of average

wait time for each example using different CPU scheduling

algorithm. Wait time varies due to variation in the properties

of CPU scheduling algorithms.

Table VI: CPU scheduling Algorithms Average Wait Time

Examples-> E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10 AVG

FCFS 6.5 10 12.6 12.8 4.4 11.6 3.2 9 3 10.4 8.35

Priority 8.6 9.2 13.4 12.4 8.8 10 3.2 9.6 4 10 8.92

SJF 4.8 8.2 9.6 11 4 8 2.4 8.8 3 9 6.88

RR (FCFS) 10.6 12.2 16.6 20.6 5.4 16.2 3.2 15 4 13.4 11.72

RR(Priority) 10.6 10 15.6 19.4 7.8 15.6 3.2 15.6 6 13.4 11.72

RR(SJF) 9.4 8 12.6 17 5 12.6 2.6 14.8 4 11.8 9.78

In Fig. 16, by Table VI we can make a graphical analysis of

wait time for each example in each algorithm, we can see that

wait time is decreases in shortest job first CPU scheduling

algorithm, because in round robin wait time increases due to

long burst times,

0
10
20
30
40
50

RR(FCFS) RR(SJF) RR(priority)

RR

AVG wait Time AVG Turnaround Time

0

5

10

15

FCFS Priority SJF RR (FCFS) RR(Priority) RR(SJF)

Response Times (time vs algo)

E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 51

Fig. 16. Comparison of Wait time

In Table VI there are ten different examples denoted as E:1-

E:10 which are solved by different six CPU scheduling

algorithms, the values are of average turnaround time, which

are computed using simulation. Turnaround time is actually

sum for burst time and wait time as we have to minimize the

wait time so turnaround time automatically decreases.

Table VII: CPU scheduling Algorithms Average Turnaround Time

Examples E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10 AVG

FCFS 11.2 15.6 20.6 21 10 18 6.6 16.4 7.8 19 14.62

Priority 13.4 14.8 21.4 20.6 14.4 16.4 6.2 17 8.8 18.6 15.16

SJF 9.6 13.8 17.6 19.2 9.6 14.4 5.4 16.2 7.8 17.6 13.12

RR (FCFS) 15.4 17.8 22.6 28.8 11 22.6 6.2 22.4 8.8 22 17.76

RR(Priority) 15.4 15.6 23.6 29.6 13.4 22 6.2 23 10.8 22 18.16

RR(SJF) 14.2 13.6 20.6 25.2 10.6 19 5.6 22.4 8.8 20.4 16.04

By Table VII we have drawn the graph in Fig. 17 through

which we can analyze which algorithm is best for decreasing

the turnaround time, in below mention chart we can see that

by using SJF CPU scheduling algorithm, average turnaround

time of every example is less than 20ms, but in other

algorithms turnaround time is crossing this limit.

Fig. 17. Comparison of Turnaround time

By using above examples we have to calculate the averages

of these results which can be further use for the critical

analysis. Table 7 contain the average results of response time,

wait time and turnaround time which is produced from

different examples using six different CPU scheduling

algorithms.

Table VIII: Averages of Response, wait and turnaround Time

 AVG Response Time AVG Wait Time AVG Turnaround Time

FCFS 8.34 8.35 14.62

Priority 8.92 8.92 15.16

SJF 6.88 6.88 13.12

RR (FCFS) 4.76 11.72 17.76

RR(Priority) 5.19 11.72 18.16

RR(SJF) 4.76 9.78 16.04

In Fig. 18. There are six different algorithms which are first

come first serve, shortest job first, priority, Round robin with

FCFS, Round Robin with SJF, Round Robin with Priority. On

the horizontal axis there are algorithms and on vertical axis

there is time. Which is computed from a lot of examples,

mention in Table V, Table VI, and Table VII.

Fig. 18. Comparison of Average Results

VI. CONCLUSION

CPU scheduling is done by various algorithms that possibly

the one can be the combination of two different algorithms.

We have done the comparison of these different CPU

scheduling algorithms which are FCFS, SJF, Priority, Round

Robin (FCFS), Round Robin (SJF) and Round Robin

(priority). This comparative analysis is done on the basis of

different criteria, which include average wait time, average

response time and average turnaround time. We have

analyzed that which algorithm minimized the wait time,

response time and turnaround time.

Our analysis criteria include solution of 60 different

example with all these six above mention CPU scheduling

algorithms, the results are then critically analyzed through bar

chart which show clearly which algorithm is best according to

our context. As we know our main goal is to increase the

throughput and decrease the wait time and response time. So

after performing different analysis we come to conclusion that

between these algorithms (FCFS, SJF, priority, RR (FCFS),

RR (SJF) and RR (priority)). Shortest job first CPU

scheduling algorithm is best due to decreasing in average wait

0

5

10

15

20

25

FCFS Priority SJF RR (FCFS) RR(Priority) RR(SJF)

wait Time (Time vs algo)

E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10

0

5

10

15

20

25

30

35

FCFS Priority SJF RR (FCFS) RR(Priority) RR(SJF)

Turnaround Time (Time vs algos)

E:1 E:2 E:3 E:4 E:5 E:6 E:7 E:8 E:9 E:10

0

2

4

6

8

10

12

14

16

18

20

FCFS Priority SJF RR (FCFS) RR(Priority) RR(SJF)

CPU Scheduling Algorithems

AVG Response Time AVG Wait Time AVG Turnaround Time

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 52

time and average response time but as we know technology is

continuously improving day by day so these algorithm are

also improving by combining different algorithm which can

be more efficient.

Future Work

As we can see that due to technology advancement there are

a lot of new ideas are generating, CPU scheduling can be

made more efficient by different and unique algorithms which

may be the combination of two or more stand-alone CPU

scheduling algorithms. Which produce more effective result

for CPU scheduling.

REFERENCES

[1]. H. Arora, D. Arora, B. Goel and P. Jain, "An Improved CPU

Scheduling Algorithm", International Journal of Applied

Information Systems, Vol. 6, No. 6, pp. 7-9, 2013.

[2]. Sindhu, M., Rajkamal, R. and Vigneshwaran, P., “An optimum

multilevel CPU scheduling algorithm”, Advances in Computer

Engineering (ACE), 2010 International Conference, (pp. 90-

94), 2010, June.

[3]. Rajput, I.S. and Gupta, D., A priority based round robin CPU

scheduling algorithm for real time systems. International

Journal of Innovations in Engineering and Technology, 1(3),

pp.1-11,2012.

[4]. N Kumar, Nirvikar, Performance Improvement Using CPU

Scheduling Algorithm-SRT, International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS) Vol. 2,

Issue 2, March – April 2013.

[5]. N Goel, Dr. R. B. Garg, Performance Analysis of CPU

Scheduling Algorithms with Novel OMDRRS Algorithm.

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 7, No. 1, 2016

[6]. Abraham Silberschatz,” CPU scheduling,” in Operating

System Concepts, ix ed. Hoboken, NJ: Wiley, 2013.

[7]. Andrew s. Tanenbaum,“ Introduction” in Modern Operating

Systems, iii ed. Harlow:Pearson Education, 2015

[8]. Silberschatz, P. Galvin, G. Gagne, “Applied Operating System

Concepts, “First edition john Wiley Sons Inc., 2000.

[9]. S. A. Tanenbaum, A. Woodhull, “Operating System, Design,”

Prentice Hall; 3rd editions, 2006.

[10]. P.Kokkinsis, “A Software Tool for process Scheduling,”

report, 2007.

[11]. Congnizant Handout, “Fundamentals of Computer

Technology,” Version:FCT/Handout/0307/7.1, 2007.

[12]. Mittal, P.K., An Efficient Dynamic Round Robin CPU

Scheduling Algorithm. IJARCSSE Journal, 4(5), 2014.

[13]. S. Shah, A. Mahmood, A. Oxley,“Hybrid Scheduling and Dual

Queue Scheduling,”Computer Science and Information

Technology, 2009.

[14]. R. Matarnesh, “Self Adjustment Time Quantum in Round

Robin Algorithm Depending on Burst Time of the Now

Running processes,” American Journal of Applied Science,

2009.

[15]. J.Lakma, “Fortifying the Operating System CPU Scheduler,”

A project report submitted to csed of Makerere Uni., 2005.

[16]. Md. A. F. AlHusainy,“Best -Job-First CPU Scheduling

Algorithm,” Information Technology Journal, 2007.

[17]. KumarSaroj, S., Sharma, A.K. and Chauhan, S.K., April. A

novel CPU scheduling with variable time quantum based on

mean difference of burst time, In Computing, Communication

and Automation (ICCCA), 2016 International Conference on

(pp. 1342-1347). IEEE. 2016

[18]. Goel, N. and Garg, R.B., A comparative study of CPU

scheduling algorithms. arXiv preprint arXiv:1307.4165. 2013.

[19]. Adekunle, Y.A., Ogunwobi, Z.O., Jerry, A.S., Efuwape, B.T.,

Ebiesuwa, S. and Ainam, J.P., A comparative study of

scheduling algorithms for multiprogramming in real-time

systems, Int. J. Innov. Sci. Res, 12(1), pp.180-185, 2014.

[20]. C.L. LIU, JAMES W. LAYLAND, Scheduling Algorithm for

Multiprogramming in a Hard-Real-Time Environment, Journal

of the ACM, Vol. 20, Issue 1, PP. 46 – 61, Jan. 1973.

