
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 3, APRIL 2017

[ISSN: 2045-7057] www.ijmse.org 11

Empirical Study of Long Parameter List Code Smell

and Refactoring Tool Comparison

Saira Moin u din
1
, Fatima Iqbal

2
, Hafiz Ali Hamza

3
 and Sajida Fayyaz

4

1,3,4
Department of Computer Science, University of Lahore, Pakistan (Sargodha Campus)

2
University of South Asia Lahore, Pakistan

1saira.moin@cs.uol.edu.pk, 2fatima.iqbal313@gmail.com, 3alihamzagondal12@yahoo.com, 4sajida.fayyaz@cs.uol.edu.pk

Abstract– The main focus of software engineering industry is

performance, security and reliability which are difficult to

manage in software at the same time. The main hurdle to achieve

this is code smells that hinders the performance of software.

Martin Fowler defined 22 bad code smells and their treatment is

termed as refactoring. Refactoring improves the overall

structure of the software and results an overall increase in

quality of a software. There are different tools in market for

code smell detection and refactoring but none of the tools can

treat all code smells. We have presented a java based prototype

BSDR for bad smell detection and refactoring based on the

principal of human mental theory. We have compared the

results of BSDR with two market oriented tools, Checkstyle and

PMD (source code analyzer) against a code smell named Long

Parameter List. The results show that PMD and Checkstyle

show almost same results but BSDR shows little bit better results

as compare to both which can be better in future.

Keywords– Code Smells, Refactoring, BSDR (Bad Smell

Detection and Refactoring) Long Parameter List, Checkstyle,

and PMD

I. INTRODUCTION

mell detection and refactoring usually lies under software

quality that mainly targets software maintenance and

extensibility along with the other quality attributes. Code

smell detection and refactoring goes side by side. Where code

smells, termed as bad code are design flaws in source code.

These smells indicate that something somewhere in code has

gone off beam. In [3] smell taxonomy was presented. Fowler

et al., [1] recognized 22 bad smells going from a simpler bad

smells like” code duplication” and “Long parameter list” to

more complex smells like “God Class” and “Feature Envy”.

He has also defined 22 bad smells into seven classes centered

on the basis of resemblance. Refactoring is a technique which

can be manual and automatic for the treatment of code smells

in a source code of program.

Refactoring has become an important practice in the

software development and maintenance. According to Martin

Fowler and co-authors the process of refactoring provides an

improvement in the internal structure of a program without

changing its external behavior. Refactoring a code makes it

easier and understandable for a programmer and enhances its

quality and design [3]. Different Refactoring tools and plugins

are available in market but none of them can provide

complete access to all bad smells purposed by different

researchers. According to Tom Mens and Tom Tour [4]

refactoring is a step by step procedure, described in six

activities:

 Recognizing where refactoring is needed.

 Defining the type of refactoring(s) need to apply to the

recognized places.

 Assuring that the applied refactoring preserves behavior.

 Apply selected method of refactoring.

 Evaluating refactoring effects on software process and

quality.

 Measuring consistency related to code and other

software artifacts.

Different refactoring techniques are introduced by different

researchers such as:

 More abstraction

 Breaking codes into logical pieces

 Improving name and location of code

There are different refactoring tools in the market like

jDeodorant [26], CheckStyle [6], PMD [7], SolidSDD [8],

InCode [9], JRefactory [10] and many others but all of these

provide refactoring for few code smells and use different

approaches. Checkstyle [6] is an eclipse plug. It checks code

layout issues and many other checks have also been provided

for different purposes. Checkstyle offers checks that find class

design problems, duplicate code, or bug patterns.

IntelliJ IDEA [11] a java Integrated Development

Environment, which besides many other features also detects

duplicates and provides refactoring support. PMD [7] is static

analysis tool that find dead code, duplicate code,

overcomplicated expressions and more. It is integrated with

“JDeveloper”, ”Eclipse”, “JEdit”, ”JBuilder”, “BlueJ”,

“NetBeans”, “IntelliJIDEA”, TextPad, Maven, Ant, Gel,

JCreator, andEmacs.

In this paper, we have presented a prototype, designed in

java for code smell detection and refactoring using a different

approach regardless of the above mentioned tools. We have

presented the results and as well a comparison of the results.

Where our prototype is showing little bit better results than

the other selected tool.

S

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 3, APRIL 2017

[ISSN: 2045-7057] www.ijmse.org 12

II. LITERATURE REVIEW

Khomh et al. in [25] presents that class with code smells is
morelikely to change then the classes without code smells.
They further show the correlation between particular type of
code smell and change proneness. They use DECORE (Defect
dEtection for CORrection) [24] approach to detect code
smells and apply changed mathematical techniques to achieve
the outcomes. Two open source systems from different
domains were chosen for experiment one was “Azureus” and
the other was Eclipse used by both open source community
and industry. From 13 releases of Eclipse and 9 releases of
“Azureus” results showed classes with smells are more
change prone then the classes without smells. They further
show that particular kind of code smells lead to change-
proneness. However, this study was limited to only few
systems and does not consider the type and amount of change.
It might give different results when used for more systems.

A similar study was presented in [5]. The basic purpose of
the study was to cheek the lifetime of code smells and
whether they are removed from refactoring. They
experimented on two open source projects and JDeodrant was
used as smell detection tools. Focus was on only three bad
smells namely “Long Method”, “Feature Envy” and “State
Checking”. Results showed that many of the smells usually
persist in the code even till the updated versions of the
system. Some of the smells that are removed were not a result
of targeted refactoring rather they are removed as
maintenance effort.

In [12] three case studies presented to show that why smell
suppression is not frequently applied by the developers and
why it’s not a subject of significant research? In first study the
subject system was five open source java based systems, the
second study was on C# web based application and the third
one was a theoretic record of smell-related refactoring. The
study showed that one of the main reasons, why smell
eradication is not applied, is associative nature of refactoring.
Usually when a refactoring is applied it required another
refactoring which in turn require another one and so on. So
developers avoid eradicating these due to massive nesting.
Many conflicts, contradictions are merged when smelly a
code is identified so it makes the identification of real smell
exorbitant and sticky. They further showed that smells that
require simple refactoring are of more interest as compared to
those that required complex ones.

Rysselberghe et al., in [13] use duplication detection
techniques to reconstruct the system evolution process. In
[22] an approach to diagnose design problems in Object
Oriented systems has been proposed. The authors said that
code bad smells are structural symptoms and by finding the
correlation between these structural symptoms, cause of bad
design as well as its treatment can be found. They
experimented on ArgoUML which is an open-source UML
modeling tool. The system is java base having 220.000 lines
of code. In their approach iPlasma (automated smell detection
tool [14]) is used to detect code smells in the above
mentioned system. Fontana et al in [23] acknowledged
different smell detection tools and differences among them.
Each tool detects different smells but none of the tool detects
all 22 smells as described in [1]. They did experiment on
different versions of object oriented open source system and

presents the results. According to their results different tools
may detect the same smell but using different criteria such as
a tools use only number of code lines to detect large class
smell while the other tool considers the size in terms of
number of methods and attributes. Checkstyle [2] is an eclipse
plug. It checks code layout issues, many other checks for
other purposes have also been provided. Checkstyle provides
checks that find class design problems, duplicate code, or bug
patterns. CheckStyle is highly configurable and can be
configured to support any coding standard. It implements
many standards checks that find class design problems, block
checks, naming conventions, bug patterns (like doubled
checked locking) and many more with bad smell detection
checks [15].

Code smells are design problems that may prompt
refactoring. These smells can be sensed by human intuition
but scalability is big issue in this case. To resolve this issue
automatic detection tools are used. So far none of the tool
detects all of the code smells mentioned in smell taxonomy
[16]. Some of the literature regarding these tools is presented
in the subsequently paragraph. Refactoring is also widely
used activity to improve the quality of the software system. A
comparative study is presented in [17].

The study evaluates the three techniques that are commonly
used for detection of duplicate code smell. The techniques
were line matching, parameterized matching and metric
fingerprinting. Five cases ranging from small to medium size
were chosen for scrutiny purpose. The study focused on task
specific suitability of detection technique. It was concluded
that line matching is only good if basic information of clones
are required. The parameterized matching gives best results if
it used with refactoring tools that works on method level.
Metric fingerprinting well suited with method level
refactoring tools. A prototype as an Eclipse plug is presented
in [18]. Context sensitivity, scalability and expressiveness are
main characteristics of this prototype. Whenever the user
browses the underlying code, half circle of wedges (triangular
shape) is appeared on smelly code. Radius of triangular shape
denotes the weight of smell in current context.

When mouse is put over the founded smell, name of the
particular smell is shown on a label. If further detail is
required about the smell, programmer can click on the smell
label. Instances of each existing smell and contributors of that
smell also spotlighted by this tool. Software Maintenance is
one of the SDLC activity that requires large part of software
development cost (up to 80% of total budget [19] and
refactoring is the activity that increase the maintainability of
software thus reducing the maintenance cost. Some of the
literature regarding software quality, refactoring and bad code
smells and detection tools is discussed below. In [20] Steve et
al presented a report of code smells analysis and claimed
illusive nature of code smells which means the actual effort
required to remove the smell is hidden, so the smells that
seem to be eradicated easily can be difficult one to be
removed. Many smells do not require single refactoring rather
series of refactoring removing them from the code. He uses
the [21] smell taxonomy and customized software tool to
discover the figure for different refactoring techniques
necessary for each of 22 code smells. Analysis shows that the
smell category known as Bloaters needs a large number of
refactoring to be removed from the code.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 3, APRIL 2017

[ISSN: 2045-7057] www.ijmse.org 13

III. BSDR PROTOTYPE

Manual refactoring is time taken and error prone so we

need a better tool support to refactor a code more effectively.

A wide range of tool support is available in this regard but

none of them provide full support of refactoring against all

bad smell. We have designed a java based prototype, BSDR

prototype for bad smell detection and refactoring which does

not provide full support but uses a different technique that

have not been used before in any of the market oriented tools.

For this work we have selected open source Xtreme media

player source code for as input for bad smell detection. Table

I shows the details of open source Xtreme media player

source code particulars.

Table I. Open source XtremeMP

Metrics XtremeMP-0.6.6

Total LOC 7956

No of Packages 17

No of Classes 71

No of interfaces 8

No of Methods 498

Method lines of code 5142

Weighted methods per class 1341

No of static methods 70

The BSDAR is a bad smell detection and refactoring

prototype that will be helpful for developers to detect bad

smell and refactor those bad smells.It will also provide the

refactoring option and suggestions for bad smells in order to

assist the software engineers/developers to apply the

appropriate refactoring techniques manually. BSDAR is

implemented in Java. It provides Graphical User Interface

using Java’s Swing capabilities. It uses Eclipse JDT (Java

Development Tools) API for bad smell detection, metrics

calculation and bad smell analytics. It also uses ASTParser to

construct the Abstract Syntax Tree (AST). The Integrated

Development Environment (IDE) used for the development of

BSDAR is NetBeans 7.1 Beta. The input of BSDAR is a Java

project folder. Fig. 1 shows the working flow chart of the

work done.

Fig. 1: Work flow of BSDR

A) Detection Technique and Algorithm

1) Parse Java source code file and construct AST.

2) Visit each Method Declaration node of AST.

3) Count the parameters of the method.

4) If the number of parameters exceeds the conditions

specified in our research work, consider this parameter

list as “long Parameter List”.

 Repeat steps from 1 to 4 for each Java source code file.

We have also added an extra parameter in the detection of

“Long parameter List”, risk priority level of that bad smell. So

by doing this we will have a priority list which directs us for

removal of high priority bad smell first and then moves

towards the low levels. The threshold values were set

according to human mental theory according to which a

human can remember 7 items at a time. Remembering more

results in lost the previous ones. Table II represents risk

priority level associated with no of parameters that uses

human mental theory.

Table II: Risk priority level

A) Results

Results after studying the behaviour of the tools with our

prototype shows that Checkstyle and PMD both use the

technique of counting the number of variables passing

through the definition of the method calling to detect Long

parameter bad smell. It just counts the number of parameter

Fig. 2: PMD results based on parameters

0
1
2
3
4
5
6
7
8
9

P
la

yl
is

tm
an

ag
er

P
la

yb
ac

kE
ve

n
t

P
la

yb
ac

kE
ve

n
tL

au
…

P
la

yl
is

tI
te

m

P
re

vi
o

u
sb

u
tt

o
n

sh
…

n
ex

tb
u

tt
o

n
sh

ap
er

P
la

yp
au

se
b

u
tt

o
n

s…

R
o

u
n

d
sq

u
ar

eb
u

tt
…

sk
in

co
m

b
o

se
le

ct
o

r

ic
o

n
co

m
b

o
b

o
x

ic
o

n
co

m
b

o
b

o
x

ic
o

n
co

m
b

o
b

o
x

ic
o

n
co

m
b

o
b

o
x

V
er

si
o

n

sp
ec

tr
u

m
b

ar
s

Total Parameters

Impact Level No of parameters

Low >=3 &< 5

Medium >=5 &<7

High >= 7

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 3, APRIL 2017

[ISSN: 2045-7057] www.ijmse.org 14

passing in definition of method name from code and

compares the value with their pre-decided threshold value

which is 3. BSDAR Prototype can detect different bad smells.

But we have chosen Long Parameter List only for our

comparison where threshold value can be change at wish. The

Fig. 2, Fig. 3 and Fig. 4 show the code smell detection results

of PMD, Checkstyle and BSDR results respectively. Number

of parameters is at Y axis while X axis contains information

about class name. Fig. 2 shows that maximum 8 parameters

and minimum 4 parameters are detected on a pre-set threshold

value. Different class names are mentioned at the X axis of

the graph.

Again same behaviour is shown by Checkstyle as by PMD,

Fig. 3 shows that maximum 8 parameters and minimum 4

parameters are detected on a pre-set threshold value in 13

different classes. Class names are mentioned at the X axis of

the graph and Y axis deals no of parameter present in a

particular class. While following Fig. 4 represents the results

Fig. 3: Checkstyle results based on parameters

Fig. 4: BSDR results based on parameters

Fig. 5: Comparison of PMD, BSDR, Checkstyle

of BSDR for long parameter list bad smell, which is little bit

different because a totally different approach is used in

BSDR.

Compared results show that “CheckStyle” detect one extra

bad smell then our prototype while “PMD” detected one less

bad smell.

IV. CONCLUSION

Based on our empirical study our prototype is working

efficiently for few bad code smells. We can enhance the same

idea to detection of all bade smells and consider the

efficiency, reliability and maintainability parameters of

quality for better results.

BSDAR prototype presently supports a limited

functionality. There is a possibility of many types of

enhancements in BSDAR such as Aspect Oriented software

development has gain a considerable attention in the recent

years. BSDAR can be enhanced by making it capable of

doing Aspect Oriented Refactoring for the bad smell that it

detects and we can also extend this prototype to a tool with

the enhancement to detect more bad code smells.

REFERENCES

[1]. M. Fowler, K. Beck, J. Brant, W. Opdyke,D. Roberts.

Refactoring Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA 1999

ISBN:0-201-48567-2

[2]. M. Fowler, K. Beck, J. Brant, W. Opdyke,D. Roberts.

Refactoring Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA 1999

ISBN:0-201-48567-2

[3]. M. Mantyla, J. Vanhanen, C. Lassenius. Taxonomy and an

initial empirical study of bad smells in code. In Proceedings of

the 19th International Conference on Software Maintenance

(ICSM 2003). Amsterdam, the Netherlands, pp. 381-384

[4]. Coding Horror: Programming and Human Factors. Code

Smells May 2006.

http://www.codinghorror.com/blog/2006/05/code-smells.html

[5]. A. Chatzigeorgiou, A. Manakos, Investigating the Evolution of

Bad Smells in Object-Oriented Code, In Proceedings of

seventh International Conference on the Quality of

0
1
2
3
4
5
6
7
8
9

P
la

yb
ac

kE
ve

n
t

P
la

yl
is

tI
te

m

ic
o

n
co

m
b

o
b

o
x

ic
o

n
co

m
b

o
b

o
x

n
ex

tb
u

tt
o

n
sh

ap
er

p
la

yp
au

se
b

u
tt

o
n
…

P
la

yb
ac

kE
ve

n
tL

a…

p
re

vi
o

u
sb

u
tt

o
n

s…

ro
u

n
d

sq
u

ar
eb

u
tt
…

sk
in

co
m

b
o

se
le

ct
o

r

p
la

yl
is

tm
an

ag
er

V
er

si
o

n

sp
ec

tu
rm

b
ar

s

Total Parameters

0

1

2

3

4

5

6

7

P
la

yb
ac

kE
ve

n
t

P
la

yb
ac

kE
ve

n
tL

au
n
…

P
la

yl
is

tI
te

m

ge
tT

ab
le

C
el

lR
en

d
er
…

ge
tT

ab
le

C
el

lR
en

d
er
…

ge
tB

u
tt

o
n

O
u

tl
in

e

ge
tB

u
tt

o
n

O
u

tl
in

e

ge
tB

u
tt

o
n

O
u

tl
in

e

ge
tB

u
tt

o
n

O
u

tl
in

e

ge
tL

is
tC

el
lR

en
d

er
er
…

ge
tL

is
tC

el
lR

en
d

er
er
…

ge
tL

is
tC

el
lR

en
d

er
er
…

V
er

si
o

n

Total parameters

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13

Total Parameters by CheckStyle

Total Parameters by PMD

Total Parameters by BSDR

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 3, APRIL 2017

[ISSN: 2045-7057] www.ijmse.org 15

Information and Communications Technology (QUATIC),

2010, vol., no., pp.106-115, Oct. 2 2010.

[6]. Checkstyle Home Page, Checkstyle 5.6 May 2012,

http://checkstyle.sourceforge.net/

[7]. Eclipse:The Eclipse Foundation open source community

website. Eclipse 4.3, June 2013,

http://www.eclipse.org/downloads/packages/eclipse-standard-

43/keplerr

[8]. Solid Source IT. Duplicate Code Detection and Analysis. June

2012. http://www.solidsourceit.com/download/SolidSDD-

download.html.

[9]. Intooitus Group inCode Helium, April,

2012.http://www.intooitus.com/products/incode/features.

[10]. JRefactory, Free development software download , May 2012,

http://jrefactory.sourceforge.net/

[11]. Jet BRAINS, IntelliJ IDEA The Best Java and Polyglot IDE ,

June 2013. http://www.jetbrains.com/idea/features/index.html

[12]. S. Counsell, R. M. Hierons, H. Hamza, Black, M. Durrand ,

Exploring the Eradication of Code Smells: An Empirical and

Theoretical Perspective, Advances in Software Engineering

Vol 2010, Article ID 820103, 12 pages

[13]. F. V. Rysselberghe, S. Demeyer, “Evaluating Clone Detection

Techniques From a Refactoring Prspective. In proceedings of

19th International Conference on Automated Software

Engineering (ASE) 2004, pp. 336-339.

[14]. C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, R. Wettel.

Iplasma, An integrated platform for quality as-sessment of

object-oriented design, In Proceedings of 21st International

Conference on Software Maintenance (ICSM 2005).

[15]. W. Opdyke. RefactoringObject-Oriented Frameworks. PhD

Dissertation, Univ. Illinois at Urbana-Champaign, 1992.

[16]. M. Fowler, K. Beck, J. Brant, W. Opdyke,D. Roberts.

Refactoring Improving the Design of Existing Code, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA 1999

ISBN:0-201-48567-2.

[17]. F. V. Rysselberghe, S. Demeyer, “Evaluating Clone Detection

Techniques From a Refactoring Prspective. In proceedings of

19th International Conference on Automated Software

Engineering (ASE) 2004, pp.336-339.

[18]. E. M. Hill, Scalable, Expressive, and Context-Sensitive Code

Smell Display. OOPSLA Companion '08 to the 23rd ACM

SIGPLAN conference on Object-oriented programming

systems languages and applications. ACM New York, NY,

USA 2008 pp. 771-772. ISBN: 978-1-60558-220-7.

[19]. B. W. Boehm. Software Engineering Economics. Prentice

Hall, Englewood Cliffs, NJ, 1981.

[20]. F. V. Rysselberghe, S. Demeyer, Reconstruction of Successful

Software Evolution Using Clone Detection, Proceedings of

the 6th International Workshop on Principles of Software

Evolution (IWPSE) pp 126 IEEE Computer Society

Washington, DC, USA 2003 ISBN:0-7695-1903-2.

[21]. C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, R. Wettel.

Iplasma, An integrated platform for quality as-sessment of

object-oriented design, In Proceedings of 21st International

Conference on Software Maintenance (ICSM 2005)

[22]. A. Trifu, R. Marinescu, Diagnosing Design Problems in

Object Oriented Systems, Proceedings of the 12th Working

Conference on Reverse Engineering (WCRE) IEEE Computer

Society Washington, DC USA 2005, pp. 155-164

[23]. F. A. Fontana, E. Mariani, A. Morniroli, R. Sormani, A.

Tonello, An experience report on using code smell detection

tools, IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops. (ICSTW),

2011 pp. 450-457, ISBN 978-1-4577-0019-4.

[24]. N.Moha, Y. G. Guehenue, L.Duchien, F. L. Meur, DECORE:

A method for specification and detection of code and design

smells." IEEE Transactions on Software Engineering, vol 36,

pp. 20-36, Jan-Feb 2010.

[25]. F. Khomh, M. D. Penta, Y. G. Gueheneuc , An Exploratory

study of the Impact of Code Smells on Software Change-

proneness, In proceedings of the 16th Working Conference on

Reverse Engineering (WCRE’09) 2009 , pp. 75-84, ISBN:

978-0-7695-3867-9.

[26]. T. Chaikalis, N. Tsantalis, A. Chatzigeorgiou, JDeodorant:

Identification and Removal of Type- Checking Bad Smells,

12th European Conference on Software Maintenance and

Reengineering (CSMR) 2008, pp. 329-331, ISBN: 978-1-

4244-2157-2.

