
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 1

Detection and Elimination of Duplicate Data from
Semantic Web Queries

Zakia S.

Faisalabad Institute of Cardiology, Faisalabad-Pakistan

Abstract— Semantic Web adds semantics to World Wide Web

by exploiting machine understandable metadata. The metadata

can be described by resource descriptor framework (RDF).

When these resources are queried by a Web browser, the

duplicate records may cause different problems: slow down

indexing time, reduced search time efficiency, and extra storage

space. We tackle this issue by implementing an algorithm which

uses hash values to eliminate duplicate data records. The goal is

to optimize the storage space and to increase the speed of

returned results. We validate our approach on structured query

language bases schema.

Keywords— RDF. Semantic and Web

I. INTRODUCTION

Semantic Web (SW) is an extension of the current World

Wide Web. In order to be easily understandable by the search
engines, SW serves as a means for the information contents:
documents, data, applications, e-services, images,
audio/video files, personal Web pages, etc. Consequently,
web users, designers, and warehouses developers can easily
integrate, share, and query data information. Thus, SW does
not only create links between web pages but also describes
relationships like A is the writer of document B, and
properties like size, location, and document type. Metadata is
represented using Resource Description Framework (RDF)
[1], an important part of the SW layer architecture [2].

Metadata describes characteristics of multiple resources,
that are not limited to web pages but can also include items,
knowledge, or concepts that can be identified on the Web,
that have great utility, for instance, properties for shopping
like price and availability. Thus, generated information and
that of the consumers can be linked by shared metadata. The
idea is not only to improve resource discovery, but also
involves: administrative control (e.g. Admin Core), security,
for instance the need for securing the process of transforming
one digital format or platform to another one, personal
information (Vcard), management information (Instructional
Management Systems), content rating (Platform for Internet
Content Selection, PICS), rights management (Uniform
Resource Characteristics, URC), and preservation (object's
provenance and context) [3].

The RDF graph model can be well mapped for
expressing relational data. Relational database model consists
of tables which further contain rows and columns constituting
data records. A record is nothing but contents of its fields
similarly. RDF nodes are nothing but the connections:

property values. The mapping is direct as a record is an RDF
node. The field (column) name is RDF property type. Finally,
the record field (table cell) is a value [4]. To simplify queries
that involve self joins for RDF data, simple arcs are used in
the graph which represents the foreign key relationship [5].

The main SW task, organized as a huge relational
database, is the metadata recovering. Thus, a large number of
languages have been used to query data available on the SW.
Due to the mapping process, some of them are inefficient:
taking time to convert data from Structured Query Language,
SQL to the targeted query language that normally has
different format. Consequently, integration of these query
languages is a difficult task.

While SQL based scheme [6] avoids these problems,
specifically, it introduces a SQL table function
RDF_MATCH query RDF data. This function allows
different parameters for carrying user query: pattern for
triples and RDF model, rule bases for inference, and aliases
for name spaces. As a result of this function, a table of
holding data is generated [6]. Furthermore, these results can
be processed by using traditional SQL query construct along
with other relational data.

Due to the lack of ability for handling duplicate query
results SQL based approach has not been used yet to handle
duplicate data on SW. A major problem in retrieving
information from SW using search engines is that there may
be multiple records referring to the same entity, increasing
amount of data, and also leads inconsistent information. In
addition, the growing data increases the duplicate data
detection from the user perspective point of view and from
the retrieval systems side.

The redundant data in SW queries is the main issue
discussed in this paper. Firstly, we describe a brief review of
RDF data query (Section 2). We explain how to detect and
eliminate redundant information by hash values, using the
Knuth Algorithm (Section 3). We validate our approach with
a case study (Section 4). Finally, we conclude and outline
some future perspectives.

II. RELATED WORK

The Structured Query Language (SQL) based scheme is
used to query RDF data [6]. RDF represents a collection of
triples of <subject, property, object> that can be easily stored
in a relational database. Most of current research is based on
efficient and scalable querying of RDF. However, approaches
like RDQL [7], RQL [8], SPARQL [9], SquinshQL [10]

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 2

define new languages for querying RDF data, which in turn,
issue SQL to process user requests. But, due to the required
transformation from the SQL data to the corresponding
language, some data processing overheads involve. To
overcome this problem, a scheme was presented which
include a SQL table function RDF_MATCH to the query
RDF data, which can search and infer from RDF data
available on the SW.

RDF_MATCH function is implemented by generating
SQL queries against tables that contain RDF data. To
improve efficiency, subject-property matrix materialized join
views and indexes are used. This join view is a group of
subjects and single valued property occurring together in the
same row. This procedure eliminates the additional joins
occurring. Also indexes on data and frequently rule bases are
used. Pre-computed triples, stored in a separate table, can be
used during the query processing. Additionally, some kernel
enhancements have been provided. It is an extension of
RDBMS table function in the form of an interface. It allows
the rewriting of table function as a SQL query and avoids
copying results into table function variables, reducing the run
time overhead. The proposed approach is an enhancement of
this SQL-based scheme, which extends its functionality to
remove redundant metadata from query results.

Redundant data are analyzed in [11], research that was
primarily motivated by the setting of Internet advertising
commissioners, who represented the middle persons between
Internet publishers and advertisers. A bloom filters algorithm
was developed; a comprehensive set of experiments were run,
using both real and synthetic click streams, to evaluate the
performance of the proposed solution. In the contexts of
sliding and landmark stream windows, the space and time
requirement for running was tested. Various applications
including fraud detection, utilizes data streams for finding
similarity among data. The technique is basically used for
data streams and there is a difference between theoretical and
practical error rates when applied on synthetic and real data.
i.e., it depends on the nature of data used.

Duplicate web documents are studied in [12], and the
strategies to eliminate them at storage level during the crawl.
Architecture for storage system was designed, implemented,
and evaluated, addressing the requirements of web
documents. Duplicated web documents are detected before
storing them on disk. Three modes checking fake duplicates
need a comprehensive knowledge that how much chance is
there for occurring duplicates in the collection.

Most of the research work done is based on duplication
removal from the web documents either by using some
specification [12] or other algorithms [11]. The problem of
elimination of duplicate data from SW has not received
sufficient attention. In order to overcome this problem, we
utilize the metadata retrieved from the Web resources using
SQL and then applying Knuth algorithm [13] to find out
duplicate query results, as described as follows.

III. PRPOSED ALGORITHM

As a result of multiple resources retrieved from different
heterogeneous information consulted, duplicate data can be

obtained, for instance SQL-based approach [6]. Thus, we
propose a methodology using SQL-based system (see Figure
1).

- The first query result is sent to the user, because no
comparison takes place (see Figure 2). When it is the
first run, index value from the query result is stored.

- For each data source, after getting the first result
from the first data source, the query results is
checked depending on their number, follow them
processing.

- Each result undergoes the calculating hash process
value [13] on the key value which in our case is the
Web resource (URL page).

- Each result is compared with all stored data in order
to check duplication.

- Each result is compared with all stored data in order
to check duplication.

METHOD: Detecting and eliminating duplicate metadata.
INPUT: Query results from semantic data source RDF.
OUTPUT: Query results free of duplicate metadata.
1 DO Read user query statement
2 WRITE Query to Data Source
3 READ Query Results
4 COMPUTE Hash Index
5 SAVE the Hash Index and Pointer In the Hash Table.
6 DISPLAY results to the user
7 WHILE not end of query results DO {WHILE LOOP}
8 READ Query Results
9 COMPUTE Hash Index
10 IF Hash Index values in STEP 9 IS EQUAL to
 Hash Index in STEP 4
 THEN

 IF Query Results in STEP 8 IS EQUAL to
 Query Results in STEP 3
 THEN
 DISCARD result
 ELSE
 SAVE Hash Index and Pointer in HashTable

 DISPLAY results to user.
 {END inner IF}

 ELSE SAVE Hash Index and Pointer in HashTable
 DISPLAY results to the user

 {END outer IF}
END {WHILE LOOP}

Fig. 1: Duplicate data removal algorithm

Each Web page metadata is collected and any attribute
(e.g. URL) is taken as a key value. After getting the hashing
value as an output of the hash function, it is stored with the
pointer in a hash table and the result is displayed. Similarly,
only more results are stored in the hash table if obtained
results are not included. When the key values match, the data
against the keys is checked to find collisions, if any. No result
is displayed when data are already stored, decreasing the

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 3

memory requirement and increasing the performance of the
system.

A. Detection of Duplicate Query Results

Data are collected from heterogeneous sources during
warehouse implementation or data integration process (see
Figure 3). As many collected data can be similar, rather than
comparing the whole information stored in the Web sites, and
whether duplicate information exist or not, this information is
recovered in the form of metadata. It is easier to determine
when some metadata are similar: current obtained result with
those already stored.

1). Hashing Function

The multiplicative scheme hash function [14] accepts an
integer hash key and returns an integer hash result, producing
a relatively normal distribution of values. The obtained value
is used either as index to store or to find similar data. This
key is the input for computing directly an address and then
mapping it to some index value which is stored in the hash
table.

Fig. 2: Data flow diagram for removing duplicate data from Semantic Web

Thanks to this key unnecessary search is produced. A
constant value is multiplied by the key value, then some
necessary bits are extracted from it to index it into the table
depending on the size of the table. For example, five most
significant bits out of 25 table size are extracted. Equation 1
shows how it can be calculated [14].

h(K) =└M O ((A/w)*K) mod 1Q┘ …1

The steps are as follows:

- K key value is multiplied by the constant A, which
lies in 0<A<1, where w is the word size of the
computer.

- KA is the fractional part extracted.
- This fraction is further multiplied by M.
- The floor is taken
This scheme is easy to implement and assure no

information is lost. The M value usually takes a power of 2,
which is not critical and may works efficiently on most of
different computer architectures.

The complexity of the proposed algorithm is calculated
in terms of the hashing function and in the number of the
table entries to be compared. The complexity of hashing
function is O(1) rather than O(n) as the data can be simply
retrieved/looked up within a linear-time array [16]. If each
query entry from SW has to be checked with all entries in the
hash table, say n, then the complexity of the proposed
algorithm is determined as follows: n*O(1).

Fig. 3: Hash table working

The main advantages of the Knuth hashing algorithm
along with SQL lie in:

1. It is an efficient solution, unless if SQL is the
only language used for querying RDF data from
SW, because the mapping requirement from other
language to SQL is removed (e.g. SPRQL [9]).

2. An implicit pass-through architecture [15] can be
used, which results in sending non-similar query
results to a web user

So, overall overhead is reduced firstly, by using SQL and
avoiding complexities caused by formats specified for
representing RDF and second, by reducing memory
requirement , which incorporates the storage of only unique
query results. The main objective of our scheme is to enhance
the efficiency and performance of the process.

In this process, queries are sent to the metadata sources
once at a time, allowing the results from each source to be
processed. When a user receives the results from SW source,
a hash index is computed which is then stored in the hash
table with a pointer to the first SW source.

Pointer to data
source

 (e.g.
Google/Yahoo)

Index value 1 for URL1

Index value 2 for URL2

Index value 3 for URL 3

.......

…... …...

…... …...

Hash value Pointer

Input (URLs) Hash
function

Hash Values

Hash Function Work Flow

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 4

The same procedure is performed for the following SW
sources, but before storing the calculated hash index, it is
compared with the index of the data source stored, avoiding
index collision. When a pair of index values matches, another
check is made to see whether query results gathered from
both the sources are same or not. We decided to use as hash
values for the URL because this can be the only attribute
which vary from site to site.

Indeed, converting URLs directly into a hash value and
comparing it, it is an efficient way rather than converting
URLs into ASCII values. Also, hashing makes fast searching
process as elimination of looking into the whole table. The
following main steps are performed when user queries the
data:

- The URLs are given as input to the system.

- This algorithm is passed to the system and its length
is calculated.

- The hash valued is calculated using the Knuth
hashing multiplicative scheme, and shift operators
for finding the most significant bits.

- After calculating, the hash value is returned.

- All process is repeated for all URLs queried.

B. Removal of Duplicate Query Results

After finding similar results already queried and stored,
its index is not stored and results are not returned/displayed to
users. A Web spider is used for finding and removing
duplicates, extracting the metadata information about Web
pages for any specific query.

1). Search Engine Specification

There exists a large list of search engines, however, we
chose two data sources: Google and Yahoo. Both support
Semantic Web concepts like setting different attributes,
search engine name, word/phrase to be searched, number of
results needed, language, preferences, new information, etc.

2). Metadata

In order to specify what kind of metadata will be
extracted, a list of check boxes is provided from which they
can be selected. Also it is possible to add and delete some
metadata, as required

As a result of using a search engine (e.g. Google) a list of
metadata information along with URLs of web pages
requested is obtained. After getting the collection of
metadata, the steps described in Section 3 are applied.

IV. CASE STUDY

In order to evaluate the performance of our approach, a
case study was used, taking the pass through architecture
[15]. The metadata about the web pages containing queried
information from different search engines and a web-spider
was used. Some duplicate results were present within these

obtained results. Then, we applied our approach on these data
to get and eliminate duplicates data.

The indexing is done based on the URL page and given
along with the related URL column. The index for the given
results is computed using the Knuth hashing scheme [13].
The duplicate results received from both sources are
highlighted as shown in Figure 4 and 5.

All user queries are sent to Google and Yahoo web data
sources to find out RDF metadata information like ID, URL,
title page, Kbs page size, last modified date. and time (see
Figure 4 for Google and Figure 5 for Yahoo). The hashing
index is calculated as explained in Section 3.

The highlighted results in Figure 4 and 5 (at serial
number 1, 2, and 3) are the same. While, the un-highlighted
sections (at serial number 4 and 5) are dissimilar data. As the
results returned from Google only have no chance for results
to be similar, the hash value for each one is stored in the hash
table.

Any obtained results are stored until they are compared
and verified that they are not duplications.

Figure 6 is the results after applying the proposed steps
in Section 3. It shows the query results (at serial 1- 4)
obtained from Google and Yahoo after removing duplicates.
The un-highlighted results of Figure 4 and 5 are shown here
as an effect of duplication removal process.

The above methodology discussed provides a way to
build large warehouses, using RDF data for data integration
purposes from multiple resources at a time. This does not
only helps in getting related data (using RDF) but also
eliminates similar data during integration process.

V. CONCLUSION AND FUTURE WORK

Search engine services enable users to recover metadata
from Semantic Web sources that usually are heterogeneous,
as well as distributed. Usually, many duplicate results are
published under the Internet. Thus, when a compendium of
precise information is required, it is suitable not to store
redundant information. Although one particular data source
may not return duplicate results, it is often possible to have
duplicate results in overall set of returned results.

For removing duplicate information, some methods
require to store the total obtained results, entailing storage
space, memory for processing, and least performance. In our
approach a hash function is used [14], to detect duplicate
query.

As a future work, we will improve our technique by
preserving records that may be ignored due to collision and
may work on optimizing the self joins queries that usually
occur during querying RDF data. The proper selection of join
method and join order plays an important role in the efficient
query processing. Also the problems with UNION
OPERATOR for comparing RDF data which relies on
column ordering based on matching values rather than
matching data types will also be considered. Besides this an
alternate storage representation based on partial or name
space based normalization, for storing RDF triples may also
be considered.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 5

ID Page URL Hash Value Page Title Page

Size

(kb)

Last Modified

Time

1 http://infolab.stanford.edu/
~melnik/rdf/api-
doc/org/w3c/rdf/model/pa
ckage-summary.html

-8275171272461040767 RDF API Draft Revision 2001-01-
19: Package org.w3c.rdf.model

7 01/19/01 18:31:35

2 http://infolab.stanford.edu/
~melnik/rdf/api-
doc/org/w3c/rdf/syntax/pa
ckage-summary.html

2751386994955643173 RDF API Draft Revision 2001-01-
19: Package org.w3c.rdf.syntax

5 01/19/01 18:31:35

3 http://infolab.stanford.edu/
~melnik/rdf/api-faq.html

-4783385828439381862 RDF API FAQ 1 10/28/00 02:15:20

4 http://jodi.tamu.edu/Articl
es/v02/i02/Anutariya/

-5016994694055057729 RDF Declarative Description:
Anutariya et al.: JoDI

10 Information not
available

5 http://www.cs.rpi.edu/~pu
ninj/rdfeditor/

6584039355575166544 RDF Editor 10 Information not
available

Fig. 4: Query Results from Google

ID Page URL Hash Value Page Title Page

Size

(kb)

Last Modified

Time

1 http://infolab.stanford.edu/
~melnik/rdf/api-
doc/org/w3c/rdf/model/pa
ckage-summary.html

-8275171272461040767 RDF API Draft Revision 2001-01-
19:Package org.w3c.rdf.model

7 01/19/01 18:31:35

2 http://infolab.stanford.edu/
~melnik/rdf/api-
doc/org/w3c/rdf/syntax/pa
ckage-summary.html

2751386994955643173 RDF API Draft Revision 2001-01-
19:Package org.w3c.rdf.syntax

5 01/19/01 18:31:35

3 http://infolab.stanford.edu/
~melnik/rdf/api-faq.html

-4783385828439381862 RDF API FAQ 1 10/28/00 02:15:20

4 http://protege.stanford.edu
/doc/users_guide/rdf_supp
ort.html

-8482678325992358661 RDF(S) Support 5 Information not
available

5 http://www.w3.org/TR/20
04/REC-rdf-mt-20040210/

-815960418018445888 RDF Semantics 228 02/10/04 15:29:29

Fig. 5: Query Results from Yahoo

ID

Page URL Hash Value Page Title Page

Size

(kb)

Last Modified

Time

1 http://jodi.tamu.edu/Articl
es/v02/i02/Anutariya/

-5016994694055057729 RDF Declarative Description:
Anutariya et al.: JoDI

10 Information not
available

2 http://www.cs.rpi.edu/~pu
ninj/rdfeditor/

6584039355575166544 RDF Editor 10 Information not
available

3 http://protege.stanford.edu
/doc/users_guide/rdf_supp
ort.html

-8482678325992358661 RDF(S) Support 5 Information not
available

4 http://www.w3.org/TR/20
04/REC-rdf-mt-20040210/

-815960418018445888 RDF Semantics 228 02/10/04 15:29:29

Fig. 6: Results after applying the proposed method

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 6

REFERENCES

[1] Manola, F., Miller, E., RDF Primer. In Publication of W3C
Semantic Web Activity, February 10, 2004.

[2] Dumbill, E., Building the Semantic Web, available on
http://www.xml.com/pub/a/2001/03/07/buildingsw.html,
March 2007.

[3] Taylor, C., An Introduction to Metadata, published by
University of Queensland Library, Library Web site, available
on http://www.library.uq.edu.au/iad/ctmeta4.html, July, 2003.

[4] Berners-Lee, T., Relational Databases on the Semantic Web,
available on http://www.w3.org/DesignIssues/RDB-RDF.html,
1998.

[5] http://www.w3.org/2007/03/VLDB/

[6] Chong E. I, Eadon Das, G., Srinivasan J., An Efficient SQL-
based Querying Scheme, Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 1216-1227,
Trondheim, Norway, 2005.

[7] http://www.w3.org/Submission/2004/SUBM-RDQL-200401
09

[8] Karvounarakis G., Alexaki, S., Christophides V., Plexousakis
D., Scholl M., RQL: A Declarative Query Language for RDF,
May in Proc. of International World Wide Web Conference,
WWW2002, 7-11, 2002, Honolulu, Hawaii, USA.

[9] http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/.

[10] Miller L., Seaborne A., Reggiori A., Three Implementations of
SquishQL, a Simple RDF Query Language, First International
Semantic Web Conference (ISWC2002), Sardinia, Italy,
published by Springer LNCS2342, pp 423-435, June 2002.

[11] Ahmed M., Divyakant A., Abbadi A., Duplicate Detection in
Click Streams, In the publication of International World Wide
Web Conference Committee (IW3C2), ACM 1-59593-046-
9/05/00, May 10-14, 2005 pp. 12-21, 2005, Chiba, Japan.

[12] Daniel G., Andre L. Santos, Mario J. S., Managing duplicates
in a web archive, Proceedings of the 2006 ACM Symposium
on Applied Computing (SAC), Dijon, France, ACM 1-59593-
108-2/06/000, pp. 818-825, April 23-27, 2006

[13] http://www.cs.utk.edu/~eijkhout/594LaTeX/handouts
/hashing-tutorial.pdf

[14] Donald E. Knuth, Art of Computer Programming, vol. 3:
Sorting and Searching 2nd edition, Published by Addison-
Wesley Professional, Apr 24, 1998.

[15] Ramanathan V. Guha, Pass-through Architecture via Hash
Techniques to Remove Duplicate Query Result, patent number
6081805, Netscape Communications, Corporation, Mountain
View, California, USA, June, 2000.

[16] http://www.netlib.org/bibnet/tools/emacs/hash-1.00/ hash.pdf

