
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

[ISSN: 2045-7057] www.ijmse.org 22

Abstract— A deterministic finite automaton (DFA) helps to

design a system in a structured way and may be used to

demonstrate visual flows between system functionalities. Formal

methods (FM) are a mathematical formalization mechanism for

the mature structuring of software / hardware products. FM

based analysis of software / hardware design yields a reliable and

robust system. In this paper, we provide FM for DAFs for the

system development based on Z-Notation formalization. Z-

Notation is widely used to describe the system properties and

operations. This formalization may provide a guaranty to an

efficient and accurate system design.

Keywords— Deterministic Finite Automaton, Formal Methods, Z-

Notation, System Design, Formal Specifications

I. INTRODUCTION

The functionalities of any system can be captured in

terms of operations and constraints. A deterministic finite

automaton (DFA) helps to design a system in a structured way

and may be used to demonstrate visual flows between system

functionalities. DFAs have various applications in the field of

computer science and engineering such as modeling of control

systems, construction of a compiler, optimization programs,

verification of protocols, human computer interaction and

pattern matching.

Formal methods (FM) are a mathematical formalization

mechanism for the mature structuring of software / hardware

products. FM based analysis of software / hardware design

yields a reliable and robust system. However, the high cost of

using FM means that these are usually suitable for the

development of high integrity safety critical secure systems.

In this paper, we provide FM for DAFs for the

development of a system based on Z-Notation formalization.

Z-Notation is widely used to describe the system properties

and operations. This formalization may provide a guaranty to

an efficient and accurate system design.

In section 2, we describe the related work while the

proposed work is presented in section 3. Section 4 gives the

summary and the future extensions to our work are suggested

in section 5.

II. RELATED WORK

A DFA is a 5-tuple state machine consisting of a finite set of

states (s), a finite set of inputs (Σ), a transition function (T : S

× Σ → S), a start state (S), and a set of accept states (A). DFAs

are abstract models of machines which are represented by

diagrams that are based on mathematical notations and

techniques. These diagrams are used to demonstrate outputs

from computations on input based on a transition function.

DFAs are particularly useful for sequential logic and control

functions and are the most practical computational models.

Due to versatility in its methodologies, DFAs are difficult to

adopt for a system.

FM are practical and precise way of solving problems by

specifying a system through its properties and associated

semantics. The system properties may include functional

behavior, performance characteristics, or internal structure.

FM can be applied at various stages (verification,

specification, development and automated proofs) of a

development process. FM provide means to symbolically

examine the entire state of a digital design and establish

correctness at all possible inputs. FM can be applied at

different levels; at high level designs where most of the details

are in abstract form, at only the most critical components, and

at only code verification and testing levels. FM provide a well

defined syntax, semantics and specifications of a system in

terms of mathematical notations derived from set theory,

discrete structures and graph representations [1]. FM have

been proved to be useful to ensure the correctness of a system

at different stages [2], [3]. The validation and verification

techniques offered by FM may be applied at each phase of the

development process [4]. Traditional development approaches

lack the ability as whereas prove of specifications is concerned

as the errors may be concealed under graphical interfaces /

specifications [5], and can be usually identified during

implementation and testing phases. Implementation errors are

difficult and costly to fix. On the other hand, the mathematical

nature of specifications, as in FM, enables to carry out proofs.

Various studies have suggested that the use of FM has a great

potential to improve the clarity and precision of a system

development process as well as in finding critical errors and

thus making the system more reliable [6]. FM have various

fields of application such as nuclear controls systems, mobile

communication systems and, portable video games. In the past,

various FM based efforts have been made for system

development. Earlier, a distributed real-time information

system to support air traffic controllers was developed [7].

Another effort was to develop a safety critical radiation

therapy machine [8]. FM based model checking for smart

cards [9], verification and validation approaches [10], and

multi-agent systems were also introduced [11]. FM may be

A Z-Notation Formalization of Deterministic Finite

Automata

1
Amjad Farooq,

2
M. Junaid Arshad,

3
Muhammad Abuzar Fahiem and

4
Ayesha Jalal

1,2
University of Engineering and Technology, Lahore-Pakistan
3,4

Lahore College for Women University, Lahore-Pakistan

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

[ISSN: 2045-7057] www.ijmse.org 23

divided into two main categories; model oriented and property

oriented [12].

Z-Notation is a model oriented approach derived built on

the fundamentals of set theory and first order predicate logic.

In Z-Notation, system states are described in terms of

mathematical structures (sets, relations, and functions). Z-

Notation consists of linear notations, definitions and

declarations, logical and relational operators and functions,

orders and equivalences, sequences, and schema notations for

expressing states and operations. Z-Notation is a good match

to procedural as well as object-oriented paradigms.

III. PROPOSED WORK

In this section, we will first give formal specifications of a

DFA and then a string acceptor followed by a language

acceptor, in terms of Z-Notation.

We select a DFA with transition function T (s1, a) = s2 for

states (S) s1, s2 and input (Σ) a. For Z-notation formalization of

the DFA, S and Σ are symbolized as ‘S’ and ‘Sig’ respectively

[S, Sig]. T is a function for each input (s1, a), where s1 is a

state and a is an input that generates a unique output s2 of type

S. Now, we can defined T as: delt: S × Sig → S. A variable

"state" is defined for a set of states of DFA. Since a given state

is of type S, so state must be a type of power set of S. Variable

‘alpha’ is declared for a set of inputs which is type of power

set of ‘Sig’.

The initial state s0 is of type S and the set of final states is

defined as "fin" and is a type of power set of S. This

constraints relationship will be used by the composition of

these objects, for which a schema structure is used. The name

of the schema structure is defined as "DFA". Figure 1 shows

the formal specifications of “DFA” using Z-Notation.

A string decider is designed in which the DFA takes

inputs which generate a Boolean output showing whether the

given string is accepted or not. It takes a string v = v1v2. . . vn

for each input vi where i = 1, 2,…, n. The DFA accepts the

string t if we reach at the final state using the transition

function. The steps followed by the DFA to accept the string

are; the DFA starts from 'q1' which is a start state, it goes from

state to state according to the transition function T, and it

accepts the string t if machine ends up at a final state. The first

part of the schema shows the inputs while the constraints are

shown in the second part.

In formal specifications of string decider two inputs, DFA

and a string v? is taken as input. Schema name of the string

decider is represented as "AcceptString". Figure 2 shows the

formal specifications of “AcceptString” using Z-Notation.

For formal specifications of language accepter in Z- notation,

language and DFA are taken as inputs and if the language is

accepted then it returns the true value. The name of the schema

structure is defined as "AcceptLang". Figure 3 shows the

formal specifications of “AcceptLang” using Z-Notation.

Fig. 1: Formal Specifications of “DFA”

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

[ISSN: 2045-7057] www.ijmse.org 24

Fig. 2: Formal Specifications of “AcceptString”

Fig. 3: Formal Specifications of “AcceptLang”

IV. CONCLUSION AND FUTURE WORK

In this research work, we have proposed formal

specification of DFAs based on FM using Z-Notation. We

have formalized the DFA itself, string acceptance and

language acceptance. This research may prove to be useful in

various industrial applications. In future, our proposed work

can be extended to formalization of union, intersection and

closure operations of DFAs using Z-Notations. Moreover, Z-

Notations can be applied to pushdown automaton, linear

bounded automaton and deterministic Turing machine, as well.

REFERENCES

[1] Ciapessoni, E., Mirandola, P., Coen-Porisini, A.,

Mandrioli, D., Morzenti, A.; From Formal Models to

Formally Based Methods: An Industrial Experience,

ACM Transactions on Software Engineering and

Methodology, vol. 8(1), (1999), 79-113.

[2] Antoniou, P., Holub, J., Illiopoulos, C. S., Melichar, B.,

Peterlongo, P.; Finding Common Motifs with Gaps

Using Finite Automata, Lecture Notes in Computer

Science, vol. 4094, (2006), 69-77.

[3] Heitmeyer, C.; On the Need for Practical Formal

Methods, Lecture Notes in Computer Science, vol.

1486, (1998), 18-26.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

[ISSN: 2045-7057] www.ijmse.org 25

[4] Bowen, J. P., Hinchey, M. G.; Ten commandments of

Formal Methods, IEEE Computer , vol. 28(4), (2006),

56-63.

[5] Bowen, J. P., Hinchey, M. G.; The Use of Industrial-

Strength Formal Methods, Proceedings of the Twenty-

First Annual International Conference on Computer

Software and Applications Conference, (1997).

[6] Easterbrook, S., Lutz, R., Covington, R., Kelly, J.,

Ampo, Y., Hamilton, D.; Experiences Using

Lightweight Formal Methods for Requirements

Modeling, IEEE Transactions on Software Engineering,

vol. 24(1), 4-14, (1998).

[7] Hall, A.; Using Formal Methods to Develop an ATC

Information System, IEEE Software, vol. 13(2), 66-76,

(1996).

[8] Jacky, J.; Specifying a Safety-Critical Control System in

Z, IEEE Transactions on Software Engineering, vol.

21(2), 99-106, (1995).

[9] Lanet, J. L., Lartigue, P.; The Use of Formal Methods

for Smart Cards, a Comparison between B and SDL to

Model the T=1 Protocol, Proceedings of International

Workshop on Comparing Systems Specification

Techniques, (1998).

[10] Frey, G., Litz, L.; Formal Methods in PLC

Programming, Proceedings of IEEE International

Conference on Systems, Man, and Cybernetics, (2000).

[11] Hilaire, V., Koukam, A., Gruer, P., Muller, J. P.;

Formal Specification and Prototyping of Multi-agent

Systems, Lecture Notes in Computer Science, vol.

1972, 114-127, (2000).

[12] Wing, J. M.; A Specifier's Introduction to Formal

Methods, IEEE Computer , vol. 23(9), 8, 10-22, 24,

(1990).

