
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 31

AgentServices: Agent Services Framework for
Handheld Devices

Ali Muhammad
1
, Aslam Muhammad

2
, Martinez-Enriquez A. M.

3

1,2
Department of CS & E., UET., Lahore, Pakistan (

1
ali@kics.edu.pk,

2
maslam@uet.edu.pk)

3
Department of CS, CINVESTAV-IPN, Mexico (ammartin@cinvestav.mx)

Abstract– Computers and computing have become versatile and

ubiquitous in the form of handheld devices. This computation

power can be utilized in agent services to solve users’ daily life

problems like hotel reservation. We propose an agent oriented

services framework (AgentServices) using JADE as an agent

system. AgentServices can be seen as a colony of multi mobile

agents running on handheld devices. It creates and consumes

services, exchange code with other agents and allows streaming of

services offered by mobile agents. We harvest mobile agent

technology in providing the user with comfort and ease to carry

daily activities using just a handheld device. As case studies, we

use the hotel reservation service support and a disaster

management service.

Keywords: Mobile Agents, Service Agents, Agent
Communication and Assistant Agent.

I. INTRODUCTION

Computer applications have become ubiquitous in the form

of smart phones, PDA’s, and laptops. The computing power of
a typical handheld device is many times greater than the most
powerful desktop computer which existed almost two decades
ago. The computing power of these handheld devices is bound
to increase at an exponential rate due to Moore’s law [9].
Cellular phone is the most common form of handheld devices
that are widely available.

In the future, the use of desktop computers would become
obsolete as ubiquitous computing will come to dominate [8].
Therefore, agents would increase as well as people depend
more on handheld device for tasks they used to do on desktop
computers. Intelligent agents are the future trend of the
Internet [7]. But, before we move forward, we briefly state
what an agent is. Though there is known controversy on agent
definition, but all agree that agents are capable of autonomous
action in an environment where they reside [2]. Discussion
about what an agent is and how it differs from programs is
given in [1].

As computer become more and more smart with higher
computation, Internet data rates, the trend towards handheld
computing would become more manifested in PDA, mobile
phones, smart watches and any electronic device (paper, pen
or clothes) [9]. However, security is a serious concern for
mobile agents, as none fully understands the influence of
mobile agents. In fact, mobile agent’s implementations have
been quite few with limited success [10].

Some examples of daily life problems that can be tackled
by agents and our proposed framework include showing only

the required support to users, automatic room reservation in a
hotel in the vicinity of the area, knowing in advance about
failures of some ATM machine before making an effort to use
it and finally streaming of live traffic video of a remote
location.

Thus, we propose a colony of collaborative mobile agents
running on handheld devices, named Agent-Services. The
agents are able to communicate each other and establish
negotiation based on users requirements, giving rise to a
mobile ad hoc network [18]. An agent has two layers: -
reactive that is responsible for resources streaming data; and -
logical layer where decisions take place. The main
contributions of this paper are: i) the design and
implementation of an environment for agent oriented services,
ii) the streaming of input/output devices data using agent
messages, and iii) the support for full agent code migration.
Our solution can be seen as an intelligent assistant for
dynamically changing computational services, wherever user
goes, whatever he needs [5].

The rest of this paper is organized as follows. Section 2
briefly reviews some of the existing attempts and prototypes
for providing services by agents. Section 3 explains our
approach in abstract terms and then gradually proceeds to
details such as agent communication, mechanism, security,
among others. Section 4 and 5 presents the case study of
“Hotel reservation” and a disaster management service called
“Register It” to demonstrate the practical aspect of research.
Finally, Section 6 concludes and gives glimpse of future work.

II. RELATED WORK

There have been number of systems providing agent
services and systems based on agents that provide versatile
services to users.

EasyLife [3] provides location aware agent based services
to facilitate users with daily needs. Three services for which a
working prototype has been developed, is weather, restaurant,
and shopping. JADE is used for implementation, although
there is a concept of agent but there is no ability to socially
interact and negotiation with other agents.

OKEANOS [4] is a distributed service based middleware
for agents that allow access to services and communication
using KQML [1]. Agent behavior is specified by symbolic
logic rules and facts. OKEANOS provides a high layer
interface for symbolic applications.

Our approach differs from OKEANOS as it provides agent
mobility and ability to provide streaming.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 32

Siri [25] is a personal intelligent assistant on IPhone that
allows users to make verbal requests. Siri processes these
requests and acts upon like scheduling appointments, buying
movie tickets, and making dinner reservations. The Siri
project uses the Net to locate services and reply to user
request. Siri does not involve social interaction with other
agents to satisfy the user request.

Microsoft Automated Service Agent [23] is an application
where users can interact in natural-language. Useful and
accurate answers in real time are provided. This approach is
limited since it can only give predefined answers which does
not involve human. So, users may formulate questions that are
not considered in the database, so any answer can be returned.

AgentServices differs from these existing approaches in
providing the ability to socially interact and negotiate with
other agents and the ability to create services on the fly. Also
in most agent systems there is rarely an emphasis or
estimation of security risks

III. AGENT SERVICES

AgentServices colony follows standards of Foundation
for Intelligent Agents (FIPA) specifications [17]. Agents can
stream data over FIPA ACL messages. Java Agent
Development Framework (JADE) [16] is an open source, fully
FIPA complaint middleware for multi-agent systems, a tiny
version of JADE called JADE leap is used for implementing
and testing the AgentServices system as the leap version can
run on handheld devices with J2ME support. In addition,
negotiate and exchange of code is possible in AgentServices.

Agents temporary establish a network connection, exchange
messages, and disconnect. Mobile nodes working in this way
are called mobile ad hoc network (MANETS) [18]. The
transmission mechanism is transparent for agents. In abstract
terms, each agent percepts from the environment and performs
an action. The perception either comes from the I/O of the
handheld device or though a message received. So the agent
environment is a set containing two elements.

E={IO, M}

Where IO: Input/output device and M: message.
The see function of the agent takes the set E as input and
generate perception as output (see Figure 1).

See: E�Per

Finally, the action or output of the agent is also a set.

Action: Per�Ac

Where Per means perception and Ac means Action.

Java ME compatible [26] handheld device is the basic
component of AgentServices, required for running.
Communication facility based on TCP/IP is provided for
working in harmony.

As we can observe in Fig 2, a handheld device has two
running mobile agents in the agent container system. The
container manages the agents and provides them services for
freely in/out movement from the handheld device system.

Fig. 1. Agent taking input from the environment and making changes to the
environment by means of actions.

Agents are designed to be peer to peer flexible, i.e.

depending on the situation, they can either act as: i) server
agent or ii) client agent.

Client agent is a thin agent and runs on the handheld
device; the basic purpose of the client agent is to locate
services and exchange messages or stream data with the server
agents. Server agents are agents which provide a specific
service to the client agents and also process and negotiate with
the client agents. In the subsequent section, we discuss how
agents represent beliefs and how rules can be specified for
making decisions.

Fig.2. AgentServices basic architecture

A. Knowledge Base

The knowledge base contains a set of beliefs in the form

of facts and rules of the agent. In AgentServices, facts and
rules are specified using JESS [15], a popular rules engine for
JAVA. JESS is used to reason and execute rules taking into
account the facts. A rule in JESS has the pattern:

 IF <condition> THEN <action> -ELSE <action> statement.

JESS has high interoperability since rules and facts can be
read and sent to other agents using XML. For instance, when a

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 33

user needs cash from ATM, the agent is required to find an
ATM near, the following xml schema for a rule is used:

(defrule NeedsCash
 "If cash is needed from ATM, deliver the cash."
 (ATM-has-cash)
 (ATM-in-order)
 => (deliver-cash))

In JESS, the input is the set of facts and the output is the
modification of these facts. Some of these output values are
associated with actions that agents can perform. These values
must be prefixed by the character asterisk.

For example, when rule output is “*alert (“Shopping
successful”)”. This output is automatically parsed by the
system and the handheld device launches an alert message on
the screen. Few other actions that can be performed are given
below in Table 1.

Table 1. Special output values

Message (X,Y) X Send a message to the
agent named Y

Stream (D,Y) Stream a device D to the
agent named Y

More discussion on stream message is given in Section 3.4.

B. Agent Registration

In AgentServices, services can be created on the fly after
a first time registration with the Agent Management system of
the JADE which resides on the main container [16]. Only
server agents need to register as they are the one providing a
service. Client agents can polymorph to a server agent by
requesting the application to create a new service.
AgentServices interface encapsulate the details of registering
with the main container of the JADE system. It knows the
location and commands to interact with the JADE system.
Once the agent has been registered with the JADE main
container, other client agents can discover and exchange
messages with this agent.
The only distinction between server and client agent is that the
server agent offers a service and is registered with the JADE.
The communication mechanism between client and server
agent remains the same.

C. Agent Communication

FIPA ACL [17] is used for exchange of message. ACL is
similar to Knowledge Query and Manipulation Language
(KQML) [22]. ACL has 21 performative of speech acts.

The content part of FIPA ACL is used to send content in
Darpa Markup language (DAML) [19], developed and funded
by DARPA. It is based on XML and RDF. The DAML is an
effort towards the semantic Web which is yet to be articulated.

DAML also contains a basic inference mechanism for
reasoning from the available data. An example of the DAML
encoded FIPA ACL inform message is given in [19].

User of client agent builds a profile specifying to the agent
what he is looking for. The profile must conform to the XML
schema of the service. There is one profile associated with
each service. Each profile defines ontology of the domain that
is expected by the service. When a profile for a particular

service doesn’t exist, it can be loaded dynamically from the
service by a FIPA ACL ‘request’ message with content
‘Service’. The data in the profile is used during
communication with the service and is used to state user
preferences.

D. Agent Streaming

The logical layer is responsible for agent communication,
negotiation, and smooth transportation of agents among
different systems, whereas reactive layer is used for streaming
data of a particular device. Streaming was implemented using
a UDP protocol [13] which is less reliable but more suitable
and faster for streaming voice and video over the network.
There are basically two ways in which this streaming can be
feasible.

1) Direct streaming from one to one agent. It is faster and
simple to implement, since it only supports one to one
streaming between two agents, it lacks of flexibility.

2) Indirect streaming from one agent to another. Data
passes through the main container, then main
container forwards data to relevant agent. It has the
advantage of streaming data to a large number of
agents.

Streaming is initiated by FIPA ACL ‘request’ message with
content ‘action: stream’. The agent waits for response. The
destination agent checks if the device is available and the
agent who is requesting has good reputation. The destination
agent may reply with ‘refuse’ or ‘agree’ message. When the
destination agent replies ‘agree’, a final ‘request’ message can
be formulated and the content “action: stream-confirm” is sent
to confirm the stream. After streams confirm message has
been received streaming of the device data starts over the
network using UDP protocol.

Fig. 3. AgentServices Layers

Next we discuss how agents can discover other services using
JADE as an agent toolkit.

E. Agent Discovery

According to FIPA, an agent may discover services of
other agents by making use of Directory Facilitator agent (DF)
[16] and agent management system, which provides a unique
identifier (name) to each agent. For instance, Agent X inquires
DF agent about agent services near at most 5km. Once a
service has been chosen, the source and service agents, begins
normal communication with each other as shown Figure 4.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 34

Fig. 4. Agent Services discovery

F. Agent Migration

A very core concept in mobile agents is code mobility as
discussed in [6, 7]. Our agent migration is based on a
modified form of [20] which proposes agent migration using
ACL message based on FIPA agent migration protocol. The
goal of transporting agents embedded in FIPA ACL message
is very clear as it is independent of agent platform and
particular programming language. In our implementation, the
entire agent migration is transparent to the platform, and main
container does not know whether the agent has been
transported.

This works by sending the compact version of the code or
executable program like a Java jar file embedded in the
content of FIPA ACL request message. The mechanism for
the agent migration request is given below.

• First the agent must request other agent to whom it
wants to migrate or execute some code by using the
FIPA ACL request message with ‘Transfer’ action.

• When the other agent receives the request message, it
decides to accept (Agree) or reject (Refuse) the
migration by sending respective message.

• If the agent agrees for the migration, the immediate
next message is the code of the agent. The code is
using the request performative with action ‘code’.

• The receiver agent informs the sender agent using
‘inform’ performative of ACL, when the agent has
successfully been migrated.

Now, we define the semantics for the agent migration in
content message. To specify the action in the content message
we make use of simple XML message. For instance, to
specify the action transfer we can use ‘action: transfer’.

The request must also specify an additional parameter
‘language’ or non-FIPA parameter ‘extension’ to inform the
destination agent about the run time environment that agent is
expecting.

Both extension and language can be specified in the agent
migration request. However, at least one is compulsory. For
instance, when agent is sending a flash file, a complete
request message may look like below:

(request
 :sender (agent-identifier :name i)

 :receiver (set (agent-identifier :name j))
 :content (Action:transfer)
 :x-extension swf)

Swf is an extension for flash files, and swf files are in
binary, therefore, the content of the message is in binary. To
denote that an attribute is not a standard FIPA, it is prefixed
with x-, like x-extension.

Such a dynamic transport of the agent is associated with
risks of malware and fraud [11], so agent security is a critical
issue which is the topic of next section.

G. Agent Security

There are security risks associated with mobile agents
such as malicious code execution, altering the critical files on
the file system or sending unwanted messages by using the
victim network. Some issues are discussed in detail in [12].
Agents can be put into two categories based on security model
of IBM aglet framework [14].

• Trusted agents

• Untrusted agents

The agent security manager checks whether the agent
should be allowed file system and other resources and lies
entirely on the host. Mobile host may ask and evaluate the
response from other known agents to determine whether to
allow/disallow access to remote agent.

Each agent is ranked from 0 to M-1. Higher value
indicates more trust. The trust value varies from 0 to 10, the
maximum is 10. Magnitude is directly proportional to the
number of trusting agents. When trust level is 4, means there
are four agents which trust the agent we are trying to
communicate.

On the other hand, the host agent can use the centralized
approach to security. In centralized approach, all the agents
refer to a central agent (server) passing to it the identifier of
the agent for which it wants to know the rating. The next
section presents a real world problem and how our system can
be used to solve problems.

IV. USE CASE: HOTEL RESERVATION

This section discusses a real world problem in which a
user wandering in a foreign city needs to find a cheap hotel to
live or find an Indian food restaurant. It is assumed that hotels
and restaurants have created and registered their services at
AgentServices system.

The users are unaware of visited city, but the services of
hotels or restaurants are needed to achieve goal. Now they
have two options.

1) Wander around streets and continuously ask people
around the area for services.

2) Use Internet with specific keywords to find services.

Unfortunately, both methods have their cons. The first
approach is tiring and doesn’t always lead good results for
instance; user may obtain misguiding, wrong or unverified
information instead.

The second approach lies on continuously searching for
required service, websites maybe outdated and in our
experience many cheap hotel and restaurant services don’t

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 35

even have a Web page. Even if a web page exists, it may not
guide user towards what exactly is looking for.

The solution is to find all services related to
hotel/restaurant in the area. This can be done by obtaining a
list of all the services on the mobile device by opening the
MobileServices application. This application will connect to
our server passing it down user profile and location
information. The user profile will contain a search string such
as hotel for the service and the maximum distance which user
has to travel to use that service. This feature requires GPS on
the agent device. The result will be a list of services matching
the user profile and user location information. The user profile
specifies what the user is looking for and is given below in
XML for the hotel service. A typical hotel schema is shown in
Fig 5.
<xs:element name="reservation">
 <xs:complexType>
 <xs:element name=”From” type="xs:date”/>
 <xs:element name=”To type="xs:date”/>
 <xs:choice>
 <xs:element name="room"/>
 <xs:element name=”room+car"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

Fig. 5. XML schema for hotel service

Since purpose of this schema is to get hotel reservation

information, therefore the top element is “Reservation” which
is of complex type and contains other attributes. The “choice”
is a special element which only allows one attribute to be
selected from its child attributes. In this case, user can either
select single room or a room and car package.

This XML schema is loaded by AgentServices on first
interaction with the service. AgentServices provides an
interface to fill these schema data and sends the information
back to hotel service.

The hotel service agent receives the message and parse it
using JESS and check for any rules fired. If some rules are
fired a reply in DAML ACL format is sent to client agent
named “Agent1”.

<acldaml:Inform >
<acldaml:sender>Serivce1 </acldaml:sender>
<acldaml:receiver>Agent1 </acldaml:receiver>
<acldaml: language value = FIPA-DAML />
<acldaml: content>
<fipa:availabe>Yes </fipa:available>
<fipa:pricing>
<fipa:standard>
<fipa:id>1</fipa:id>
<fipa:price>10>
<fipa:unit>$</unit>
<fipa:facilities>
<fipa:airconditioner>no</fipa:airconditioner>
<fipa:tv>yes</fipa:tv>
</fipa:facilities>
<fipa:simulation> Yes </fipa:simulation>
</fipa:standard>
<fipa:luxury>

<fipa:id>2</fipa:id>
<fipa:price>20>
<fipa:unit>$</unit>
<fipa:facilities>
<fipa:airconditioner>yes</fipa:airconditioner>
<fipa:tv>yes</fipa:tv>
</fipa:facilities>
</fipa:standard>
<fipa:simulation> Yes </fipa:simulation>
 </fipa:pricing>
</acldaml:content>
 value = FIPA-DAML />
<acldaml:content-length value = 12 />
<acldaml:ontology value =Hotel Ontology />
</acldaml:inform >

Fig. 6. Sample Reply from hotel service

The reply message in XML schema (Fig.6) from hotel
services indicates rooms available based on user requirements
are ‘standard’ and ‘luxury’. The price for a standard room
with ‘TV’ facility is 10$ and the price for luxury room with
‘TV’ and ‘AC’ is 20$. They are identified by a unique id. User
can select one of these options. The message also states that
simulation is available for both of these room types. The
simulation means ‘agent 1’ can request the simulation from
the hotel service which is ‘service 1’.The simulation may
include sending a photo, video or a program which allows
user to experience and become more familiar with the object
of interest in this case a room before materializing their final
decision. The simulation can be requested from the service by
sending the ‘request’ message to the service by specifying the
unique id of the resource for which simulation is request.

Once the service agent receives this message, it parses and
adds the message to its KB and checks fired rules. When a
simulation rules is fired, the simulation in binary ‘jar’ format
of JAVA or any other binary format is sent to ‘agent 1’. A
typical simulation message may look like that shown in Fig. 7.

<acldaml:execute >
<acldaml:sender>Service1 </acldaml:sender>
<acldaml:receiver>Agent 1</acldaml:receiver>
<acldaml: language value = FIPA-DAML />
<acldaml: content>
<fipa:simulation>
<fipa:id>2</fipa:id>
<fipa:binary>
[binary data]
</fipa:binary>
</fipa:simulation>
</acldaml: content>
</acldaml:execute>

Fig.7. Simulation message

Once the message is received, the agent ‘agent1’
compares the Id of the execute message to check whether it
has requested the simulation for such Id, ‘agent1’ executes the
binary code if and only if

1) Id matches with beliefs and knowledge base of the
agent.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 36

2) The service is reliable and no known complain is
available for it.

3) The agent still has a desire to obtain the simulation.

Statement 1 is easy to check, for 2 we have discussed two
ways to check the reliability of the agent that is either ask
fellow agent about the service reputation or ask a centralized
server about the service reputation.

The statement 3 is also not hard to check, when
immediately the service agent replies and within a specified
time. It is very likely that agent still has a desire to see the
simulation. On the other hand if agent has already seen the
simulation of some other service or user explicitly cancels the
reservation, the agent may not have a desire anymore to see
the simulation.

V. USE CASE: DISASTER MANAGEMENT SERVICE
(REGISTER-IT)

Natural disasters like earthquake, floods and tornados
have become extremely common due to changing climate,
human activities and global warming. On 11th March 2011
Japan had its worst crisis in 65 years in the form of 8.9
magnitude earthquake followed by tsunami. Although natural
disasters can’t be prevented, they can be managed using
technology such as intelligent agents. In these natural
disasters; it is very important and crucial for families of the
victims to swiftly know about the victim’s safety and situation
of the area affected by natural disaster.

One way for government to manage the situation is to
create a website with instructions and a guide to what to do in
the scene and air information about the affected areas and
people. This approach is rather time consuming, and it is often
the case that victims who have been affected by the natural
disaster like earthquake may not have access to the TV due to
breakage or no power. The probability that they still have
access to their handheld device like cell phone is most likely.
Although the complete elaboration of this use case is outside
the scope of the paper, we briefly state how we can tackle this
problem using AgentServices.

Government of the affected area can immediately create a
number of agent services. The core purpose of some services
is to guide the users and allow them to get the crucial
information like emergency numbers.

One of the services named “Register Me” can help a
victim identify themselves and register their name, location
and problem with the centralized database. Additionally they
can also upload a picture or brief video of the situation to the
database. The information can then be used for data mining,
providng up-to-date news of the affected area and population.

A typical scenario is a user affected by the natural disaster
like earthquake locates the emergency services created on the
fly by the government and registers with the service. The
XML schema for “Register Me” service is given below.

<xs:element name="Register Me Service">
 <xs:complexType>
 <xs:element name=”Name:” type="xs:String”/>
 <xs:element name=”Location:”type="xs:String”/>

 <xs:element name="Problem:" type="xs:String"/>
 <xs:choice name=”Picture,Video,Choice”>
 <xs:element name="picture"/>
 <xs:element name=”Video "/>
 <xs:element name="picture+video"/>
 </xs:choice>
</xs:complexType>
</xs:element>

Fig 8: XML schema for “register me service”.

This XML schema allows users to share their name,

location and problem with the service. Also it gives them
choice to select picture, video or both for uploading to the
service database. This information goes to the service agent
who registers the information in its database and checks for
any rules fired. If the user has selected for instance a picture
element, the following rule can be fired and evaluated using
JESS.

IF <message.picture=true> THEN <ask For Picture>.
When ‘ask for picture’ rule is fired the server agent can

send a simulation request message to the client giving it ability
to upload a picture to the server database. At this point, client
receives the simulation request which is interpreted again by
the JESS rule engine and an interface is provided to upload
the picture. Complete mechanism and code for this
mechanism is being intentionally not given due to the space
requirement. At this point user of the client agent can either
upload the picture or cancel the request. If many victims use
this service, it can greatly aid government and families of the
victims to plan things and thus manage the disaster using the
technology.

VI. CONCLUSION

The main contribution of our approach is a dynamic
creation and consumption of agent services, and the ability to
transfer and execute remote code, as well as the streaming of
devices data. The significance focus on security was
explained. The two use cases demonstrate few problems that
can be tackled using our approach out of many versatile
problems that this framework is capable of solving.
AgentServices may be viewed as a form of services oriented
architecture in which intelligent agents provide useful
information services. This framework is built on top of FIPA
ACL and DAML which are quite popular.
Future work on this approach includes more feasibility and
security of the proposed framework.

REFERENCES

[1] Franklin, S., Graesser, A. ‘Is it an agent, or just a program?’
Proceedings Third International Workshop on Agent Theories,
Architectures and Languages, Budapest,Hungary, 193-206
(1996)

[2] M. Wooldridge, ‘An Introduction to Multiagent Systems’,
Wiley, New York, (2002)

[3] J. M. Shen, M. J. O’Grady and G. M. P. O’Hare EasyLife: ‘A
Location-Aware Service Oriented Mobile Information System’
Knowledge-Based Intelligent Information and Engineering

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 1, NO. 2, NOVEMBER 2010

ISSN: 2045-7057] www.ijmse.org 37

Systems Lecture Notes in Computer Science, Volume
5177/2008, 229-236 (2008)

[4] R. D. Schimakat, W. Blochinger, and C. Sinz, ‘A service-based
agent framework for distributed symbolic computation,’ in Proc.
8th Int. Conf. High Performance Computing Networking,
Amsterdam, The Nether-lands, pp. 644–656 (2000)

[5] Martin Griss, Reed Letsinger, Dick Cowan, Craig Sayers,
Michael VanHilst, and Robert Kessler., ‘CoolAgent: Intelligent
Digital Assistants for Mobile Professionals - Phase 1
Retrospective’, HP Laboratories Report HPL-2002-55(R), (Jul
2002)

[6] D. Kotz, R. Gray, and D. Rus ‘Future directions for mobile-
agent research’. IEEE Distrib. Syst. [Online] Available:
http://dsonline.computer.org/0208/f/kot_print.htm (2002, Aug).

[7] D. Kotz and R. S. Gray, ‘Mobile agents and the future of the
internet’ IEEE Trans. Automr. Contc, vol. AC-28, pp. 1081-
1090, (Dec 1983).

[8] M.Weiser. Hot topic: ‘Ubiquitous computing’. IEEE Computer,
26(10):71–72, (Oct 1993)

[9] Mattern, F.: ‘Wireless future: Ubiquitous’ Congress 2004,
Munich, Germany. (2004)

[10] D. Milojicic. Trend Wars: ‘Mobile agent applications’. A
review article in IEEE Concurrency, pp. 80-90 (July-Sep 1999)

[11] Greenberg,M.S., Byington, J.C., Harper, D.G.:’Mobile agents
and security’. IEEE Commun. Mag. 36(7), 76–85 (1998)

[12] Borselius, N ‘Mobile agent security’, Electronics and
Communication Engineering Journal, IEE Press, Vol. 14, No. 5,
pp 211-218.(2002)

[13] J. Postel, RFC 768: ‘User Datagram protocol’, (August 28,
1980)

[14] D.B. Lange, ‘Java Aglet Application Programming Interface’
white paper, 2nd draft, IBM Tokyo Research Laboratory (1997)

[15] Ernest Friedman-Hill The Rule Engine for the JavaTM Platform
http://www.jessrules.com/ (1995)

[16] Bellifemine, F., Poggi, A., Rimassa, G.: ‘Jade, A FIPA-
compliant Agent Framework’.4th International Conference on
Practical Application of Intelligent Agents and Multi-Agent
Technology, (1999)

[17] Foundation for Intelligent Physical Agents. Specifications.
Available from http://www.fipa.org (1997).

[18] Jinbae Park, Hyunsang Youn, Eunseok Lee ‘A Mobile Agent
Platform for Supporting Ad-hoc Network Environment’ (2007)

[19] Youyong Zou, Tim Finin, Yun Peng, Anupam Joshi, and Scott
Cost ‘Agent Communication in DAML World’. In Innovative
Concepts for Agent-Based Systems Lecture Notes in Computer
Science, Volume 2564/2003, 347-354 (2003)

[20] Ametller, S. Robles, and J. Borrell, ’Agent Migration over FIPA
ACL Messages’, in Mobile Agents for Telecommunication
Applications (MATA), ser. Lecture Notes in Computer Science,
vol. 2881. Springer Verlag, pp. 210-219. (Oct 2003)

[21] P. O’Brien and R. Nicol, ‘FIPA—Towards a Standard for
Software Agents’ BT Technology J., vol. 16, no. 3, pp. 51-59,
(July 1998).

[22] T. Finin, Y. Labrou, and J. Mayfield. ‘KQML as an agent
communication language’. In J. Bradshaw, editor, Software
Agents. MIT Press, Cambridge, (1997).

[23] Microsoft White Paper Comparing Microsoft Automated
Service agent (ASA) solutions to browser and search based self
service solutions [2007]

[24] S. Liu, P. Küngas, M. Matskin, ‘Agent-Based Web Service
Composition with JADE and JXTA’, Proceedings of the 2006
International Conference on Semantic Web and Web Services,
SWWS 2006, Las Vegas, USA, June 26-29, (2006).

[25] Siri- Your Virtual Personal Assistant http://siri.com/.
[26] J. W. Muchow. Core J2ME Technology and MIDP. Prentice

Hall, (2001).

