On Norms of Derivations Implemented by Self-Adjoint Operators

1st VICTOR SHAGWILA Department of Mathematics Kisii University P.O Box 408-40200, Kisii-Kenya. vicshagwila@gmail.com

3rd ROBERT OBOGI Department of Mathematics Kisii University P.O. Box 408-40200, Kisii, Kenya krobertobogi@yahoo.com 2nd N. B. OKELO

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology P. O. Box 210-40601, Bondo-Kenya, bnyaare@yahoo.com

4th O. S. Cyprian Department of Mathematics Kabarak University P.O. Box Private Bag - 20157, Kabarak, Kenya cypriansakwa@gmail.com

ABSTRACT—In the present paper, we introduce and study the concept of norms of derivations, in particular norm estimates of derivations implemented by self-adjoint operators. We show that $\|\delta_C\| = \|CX - XC\| \le 2\|C\|$, for inner derivation while for generalized derivation we establish that $\|\delta_{C,D}\| = \|C\| + \|D\|$, for all $C, D, X \in B(H)$. We also estimate that $\|C\| \le \|CX - XC\| \le 2\|C\|$ and $\|\delta_C\| \ge 2(\|C\|^2 + \beta^2)^{\frac{1}{2}}$

Index Terms—Generalized Derivation, Norms of derivations, Selfadjoint Operators.

1 INTRODUCTION

The study of notion of norms is of great interest to many researchers and mathematicians. Of special interest is the determination of norms of derivations implemented by self-adjoint operators. By letting B(H) denote the algebra of all bounded linear operators on an infinite-dimensional complex Hilbert space, we define the inner derivation as $\delta_A(X) = AX - XA$ and generalized derivation as $\delta_{A,B}(X) = AX - XB$, for operators $A, B \in B(H)$. Norms of elementary operators has been dealt with by quite a number of researchers. For instance the authors in [10] proved that for standard operator algebras on Hilbert spaces $||M_{C,D} + M_{D,C}|| \ge 2(\sqrt{2} - 1)||C|| ||D||.$ The research in [4] dealt with norm of a C^* -algebra and established that ||CYD - DYC|| = 2||C|| ||D||. The study in [14] investigated norms of elementary operators and in [15] focussed on computing the norm of elementary operators where it is shown that, $||M_{C,D} + M_{D,C}|| \ge ||C|| ||D||$. In [9], injective norm is used to characterize nomaloid operators and determine their lower norm estimates as, $||C|| ||D|| \le ||CYD+$ $DYC \parallel \leq 2 \parallel C \parallel \parallel D \parallel$. The authors in [6] determined the norm of an elementary operator and characterized these norms when they are implemented by norm-attainable operators. In their study they showed that $\|\mathcal{J}_{N,C,D}|B(H)\| \geq \|C\|\|D\|$, in

which $C, D \in B(H)$ and $\mathcal{J}_{N,C,D}$ is a norm-attainable Jordan elementary operator. Others who studied this topic include [1,3,7,8,16].

2 DERIVATIONS

The concept of derivations came as a result of an elementary operators. An elementary operator is the sum basic elementary operator, i.e, $\mathcal{J} = \sum_{i=1}^{k} M_{C_i D_i}$ for all $C, D \in B(H)$. In this case derivations are examples of elementary operators. Therefore an inner derivation is defined as $\delta_A(X) = AX - XA$ while a generalized derivation as $\delta_{A,B}(X) = AX - XB$, for operators, $A, B, X \in B(H)$. Regarding the study of the norm of a derivation a number of results have been given. For instance, Stampfli and Williams [14] determined the upper norm estimate of inner derivation as $\|\delta_A\| \leq 2\|A\|$ and $\|\delta_{A,B}\| \leq \|A\| + \|B\|$, for generalized derivation. Stampfli [12] showed that the lower norm estimates of an inner derivation lie between two values i.e, $\|A\| \leq \|\delta_A(X)\| \leq 2\|A\|$.

Stampfli [12] in his study of self-adjoint derivation ranges established that the results of the propositions below:

Proposition 1. $W_0(A)$ is a non-empty closed convex set included in W(A).

Proposition 2. Let $A \in B(H)$, where H is a complex Hilbert space of dim ≥ 2 . Then,

 $0 \in W_0(A) \Leftrightarrow \sup\{ \|AX - XA\|, \|x\| = 1 = 2\|A\| \}.$

Proposition 3. Let $A \in B(H)$, where H is a complex Hilbert space of dim ≥ 2 . Then,

- (i) $0 \in W_0(A) \Rightarrow ||A||^2 + |\lambda|^2 \le ||A + \lambda I||^2, \forall \lambda \in \mathbb{C}$
- (ii) $||A|| \leq ||A + \lambda I|| \Rightarrow 0 \in W_0(A)$
- (iii) $\forall A \in B(H)$, there exists a unique λ_0 such that $||A + \lambda_0 I|| \le ||A \lambda I||, \forall \lambda \in \mathbb{C}$

Proposition 4. Let $A, B \in B(H)$, such that $A \neq 0, B \neq 0$ with dim ≥ 2 . Then the following condition are equivalent

- (i) $W_N(A) \cap W_N(-B) \neq \phi$,
- (ii) There exists a sequence of operator s {X_n} in B(H) such that ||X_n|| = 1, lim_n ||AX_n − X_nB|| = ||A|| + ||B||,
 (iii) ||A|| + ||B|| ≤ ||A + λI|| + ||B + λI||.

While studying derivation ranges, Stampfli [11] stated various propositions and corollaries;

Proposition 5. Let $0 \le A \le I$ and $0 \le B \le I$. Then $ReAB \ge \frac{-1}{8}$. More generally, $ReAB \ge k_1k_2 - (K_1 - k_1)(K_2 - k_2)/8$, $0 \le k_1 \le A \le K_1 \le B \le K_2$.

Corollary 1. Let T be a normal (hyponormal) operator. Then

$$\|\delta_T\| \sup\{\|TA - AT\| : A \in B(H), \|A\| = 1\} = 2R_T,$$

where R_T is the radius of spectrum of T.

Corollary 2. Let $0 \le A \le 1, 0 \le B \le 1$. Then $||AB - BA|| = 2||ImAB|| \le \frac{1}{2}$.

Okelo, Agure and Ambogo [6] determined the norm of an elementary operator using spectral decomposition concept in which they gave the following results.

Lemma 1. If $J \in B(H)$, then there exists two isometries $\alpha_1, \alpha_2 \in B(H)$ such that $T = 1/2(\alpha_1 + \alpha_2)$. In addition, if $\dim N(J) = \dim N(J^*)$, then α_1, α_2 can be taken as unitaries.

Nyamwala and Agure [5] determined the norm of elementary operators induced by normal operators in a finite-dimensional space using spectral resolution theorem.

Lemma 2. Let B be a normal operator such that

 $B: H \to H$, where H is a finite n-dimensional space, then $\|B\| = \left(\sum_{i=1}^{n} |\alpha_i|^2\right)^{1/2}$ and α_i are distinct eigenvalues of B for corresponding eigenspaces $N_i, i = 1, 2, ...n$.

3 NORMS OF DERIVATIONS

In this section we give the results of our study. We establish norms of derivations in the following ways:

Proposition 6. Let $C \in B(H)$ where H is a complex Hilbert space and let λ_0 be the center of C.

- (i) $\|\delta_C\| = 2\|C \lambda_0\| = 2inf\|C \lambda\|, \lambda \in \mathbb{C}$
- (*ii*) if $\beta \in W_0(C)$, then $\|\delta_C\| \ge 2(\|C\|^2 \beta^2)^{\frac{1}{2}}$.
 - Proof. (i) If dim H = 1 the proof is evident. Suppose dim $H \ge 1$. We establish that $0 \in W_0(C) \iff 0$ is the center of $C : ||C|| \le ||C + \lambda||$, for all $\lambda \in \mathbb{C}$. Which is equivalent to $\sup ||CY YC||, ||y|| = 1 = 2||C||$. Since $\delta_C = \delta_{C-\lambda I}$, the second equivalence fix the value of $||\delta_C||$ with the choice of λ imposed by the first equivalence.

(ii) For $\beta \in W_0(C)$ we associate a sequence $\{y_k\}$ with $||y_k|| = 1$, $\lim_k ||Cy_k|| = ||C||, \beta = \lim_k (Cy_k, y_k)$ and $G_k = Vect\{y_k, y'_k\}$, where y_k, y'_k is an orthonormal basis of G_k and $(Cy_k, y'_k) \ge 0$, where $Cy_k \in G_k$. Let $Y_k = y_k \otimes y_k - y'_k \otimes y'_k$. Then $(\delta_C Y_k)y_k = Cy_k - (Cy_k, y_k)y_k + (Cy_k, y'_k)y'_k$ $= 2((Cy_k, y'_k)y'_k)$ $= 2(||Cy_k||^2 - (|(Cy_k, y_k)|^2)^{\frac{1}{2}}y'_k$. Hence $||\delta_C|| \ge \lim_k ||(\delta_C Y_k)y_k|| \ge 2(||C||^2 - |\beta|^2)^{\frac{1}{2}}$.

Proposition 7. Let C, D be two elements of B(E), where E is a complex Hilbert space. Then

(i) $\|\delta_{C,D}\| = inf\|C - \lambda\| + \|D - \lambda\|, \lambda \in \mathbb{C},$ (ii) $W_N(C) \bigcup W_N(D) \neq \Phi \iff \|\delta_{C,D}\| = \|C\| + \|D\|.$

Proof.. In the study of $W_N(A)$ it was established that $||C|| + ||D|| \le ||C - \lambda|| + ||D - \lambda|| \iff \exists \{Y_k\}, ||Y_k|| = 1$, such that $\lim_k ||CY_k - Y_kD|| = ||C|| + ||D||$. Since $\delta_{C,D}(Y) = \delta_{C-\lambda,D-\lambda}$ hence $||\delta_{C,D}(Y)|| \le ||C - \lambda|| + ||D - \lambda||$, for all, $Y \in B(H), ||Y|| = 1$. Then $||\delta_{C,D}|| \le \inf \|C - \lambda\| + \|D - \lambda\|, \lambda \in \mathbb{C}$.

$$\|\partial f_{i}\| = \|\partial f_{i}\| = \|\partial f_{i}\| + \|D - A\|, A \in \mathbb{C}.$$

Lemma 3. Let $\alpha \in W_0(A)$. Then $\|\delta_A\| \ge 2(\|A\|^2 - |\alpha|^2)^{\frac{1}{2}}$

Proof.. Note that $\|\delta_A\| = \sup\{\|AX - XA\| : X \in B(H) \text{ and } \|x\| = 1\}$. Since $\alpha \in W_0(A)$, there exists $u_n \in H$ such that $\|u_n\| = 1, \|Au_n\| \to \|A\|$ and $(Au_n, u_n) \to \alpha$. Set $Au_n = \mu u_n + \beta v_n$ where $(u_n, v_n) = 0$. Set $R_n u_n = u_n, R_n v_n = -v_n$ and $R_n = 0$ on $\{u_n, v_n\}$. Then $\|(AR_n - R_nA)u_n\| = 2|\beta_n| \ge 2(\|T\| - |b_n|^2)^{\frac{1}{2}} - \lambda_n$ where $\lambda \to 0$. Since $b_n \to \alpha$ hence the proof. \Box

Theorem 3. $\|\delta_A\| = 2\|A\|$ if and only if $0 \in W_0(A)$.

Proof.. It follows from the above lemma that $\|\delta_A\| \ge 2\|A\|$ if $0 \in W_0(A)$. Since $\|\delta_A\| \le 2\|A\|$ sufficiency is proved. Suppose $\|\delta_A\| \le 2\|A\|$ and so there exist u_n and X_n such that $\|u_n\| = \|X_n\| = 1$ and $\|AX_nu_n\| \to \|A\|$. Moreover, since $\|(AX_n - X_nA)u_n\| \to 2\|A\|$, $AX_nu_n = -X_nAu_n + \overline{\lambda}_n$ where $\|\overline{\lambda}\| \to 0$. Let $(Au_n, u_n) \to \alpha$ by choosing subsequence if necessary i.e $\alpha \in W_0(A)$. Observe that $(AX_nu_n, X_nu_n) = -(X_nA, X_n^*X_nu_n) = -(Au_n, u_n) + \lambda'_n$. Thus $\lim_{n\to\infty} (AX_nu_n, X_nu_n) = -\alpha$. Since α and $-\alpha \in W_0(A)$, it implies that $0 \in W_0(A)$.

Theorem 4. Let $||T - A|| \leq \delta$. Then $|C_T - C_A| \leq \frac{(\delta + |\delta^2 + 8\delta] ||T - C_T||^{\frac{1}{2}}}{2}$ where C_A is the center of mass of operator A. In this sense, the map $A \to C_A$ is continuous in the uniform operator topology.

Proof.. We let
$$C_A = 0$$
, then
 $||A||^2 \ge |C_A|^2 + ||A - C_A||^2$
 $\ge |C_A|^2 + ||T - C_A||^2 - 2\delta ||T - C_A|| + \delta^2$
 $\ge 2|C_A|^2 + ||T||^2 - 2\delta (||T|| + |C_A|) + \delta^2$
 $\ge ||A||^2 + (2|C_A|^2 - 2\delta |C_A| - 4\delta ||T||).$

Solving for C_A in the last expression on the right, we conclude that $C_A \leq \frac{(\delta + [\delta^2 + 8\delta \|T\|^{\frac{1}{2}}])}{2}$.

Lemma 4.
$$W_0(A) \bigcap W_0(A + \beta) = \phi$$
, for any $\beta \in \mathbb{C}, \beta = 0$.

Proof. Let $\alpha \in W_0(A) \cap W_0(A+\beta)$. Then $||A|| + |\lambda|^2 +$ $2Re\overline{\lambda}\beta \leq ||A+\lambda||$ for $\lambda \in \mathbb{C}$, and $||A+\beta||^2 + |\lambda|^2 + 2Re\overline{\lambda}\alpha \leq 2Re\overline{\lambda}\beta$ $||A + \beta + \lambda||^2, \lambda \in \mathbb{C}$. Letting $\lambda = \beta$ in the first inequality, we obtain $||A + \beta||^2 + |\beta|^2$. Let $\lambda = -\beta$ in the second inequality, we obtain $||A + \beta||^2 + |\beta|^2 - 2Re\overline{\beta}\alpha \leq ||A||^2$. Combining these yields $|\beta|^2 \leq 0$, which completes the proof.

Theorem 5. Let
$$\delta_A$$
 be a derivation on $B(H)$. Then,
 $\|\delta_A\| = \sup\{\|AX - XA\| : X \in B(H), \|X\| = 1\}$
 $= \inf_{\lambda \in \mathbb{C}} 2\|A - \lambda\|.$

Proof.. Since $||AX - XA|| = ||(A - \lambda)X + X(A - \lambda)||$

 $\leq 2\|A - \lambda\| \|X\|,$ it follows that $\|\delta_T\| \leq \inf_{\lambda \in \mathbb{C}} 2\|A - \lambda\|$. On the other hand, $||A - \lambda||$ is large for λ large, so $\inf ||A - \lambda||$ must be taken at some point, say s_0 . But $||A - s_0|| \le ||(A - s_0)||$

 $\leq \|(A-s_0)+\lambda\|,$ for all $\lambda \in \mathbb{C}$ implies that $0 \in W_0(\overline{A} - s_0)$. Hence, $\|\delta_A\| = \|\delta_{A-s_0}\| = 2\|A - s_0\|$.

Theorem 6. Let G be an irreducible C^* -algebra on H. Let $A \in G(H)$. Then $\|\delta_A|G\| = \sup\{\|AX - XA\| : X \in G, \|X\| = 1\}$ $= \inf_{\lambda \in \mathbb{C}} 2 \|A - \lambda\|.$

Proof. We use the fact that B(H) contains an operator T such that Tu = u, Tv = -v and ||T|| = 1 for any $u, v \in H$ where $\langle u, v \rangle = 0$. However, if G is an irreducible C^{*}-algebra then there exists a unitary operator $R \in G$ such that Ru = uand Rv = -v whenever $\langle u, v \rangle = 0$. The rest of the proof carries over with only trivial modifications which we shall omit.

Corollary 7. Let G_B be an irreducible C^* -algebra on the Hilbert space H_{β} for β in the index set N. Let $G = \sum_{\beta} \oplus G_{\beta}$ on $H = \sum_{\beta} \oplus H_{\beta}$ where $||X|| = \sup_{\beta} ||X_{\beta}||$ for $X \in G$. for $X \in G$. Let $A \in B(H)$, and let $\delta_A : G - G$. Then $\|\delta_A\| = \sup \|AX - XA\| : X \in H, \|X\| = 1 = \inf\{2\|A - A\|\}$ $N \parallel : N \in B(G)$ where B(G) is the centre of G.

Proof.. Since $\delta_A : G - G$ then $A = \sum \oplus A_\beta$ where $A \in$ $B(H_{\beta})$. For each $\overline{\beta}$ choose λ_{β} such that $\|\overline{\delta}_{A_{\beta}}\| = 2\|A - \lambda_{\beta}\|$. Note that the corollary is not true if we hold our conditions on G. For instance let G contains an operator valued 2×2 matrices on $H \oplus H$ of the form $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$, where $X \in B(H)$. Then, $\delta_A : G \to G$. Indeed, $\delta_A = \delta_0$, and so $\|\delta_A\| = 0$. But, $\inf_{\lambda \in \mathbb{C}} \{ \|A - N\| : N \in B(G) \} = 1.$

Lemma 5. Suppose that neither S nor T is a scalar multiple

of the identity. Then $\inf\{\|S - \lambda\| + \|T - \lambda\|\} = \|S - \lambda_0\| + \|S - \lambda_0\|$ $||T - \lambda_0||$ if and only if

$$W_N(S-\lambda_0) \bigcap W_N(-(T-\lambda_0)) \neq \phi.$$

Proof. Let $W_N(S - \lambda_0) \cap W_N(-(T - \lambda_0)) \neq \phi$. Then

$$\begin{aligned} |\delta_{ST}\| &= \|\delta_{(S-\lambda_0),(T-\lambda_0)}\| \\ &= \|S-\lambda_0\| + \|T-\lambda_0\| \end{aligned}$$

Since

$$\begin{split} \|SK - KT\| &= \|(S - \lambda)K - K(T - \lambda)\| \\ &\leq \|S - \lambda\| + \|T - \lambda\| \\ &\leq \inf_{\lambda \in \mathbb{C}} \{\|S - \lambda\| + \|T - \lambda\|\} \end{split}$$

hence the necessity is shown.

For sufficiency, we assume without loss of generality that $\lambda_0 =$ 0. This means there is $\lambda, \varepsilon \geq 0$ such that there exists $u, v \in H$ of unit norm, so that $||(S + \lambda)u|| + ||(T + \lambda)v|| \ge ||S|| +$ $||T|| - \varepsilon$. After some algebra, we find that $Re\overline{\lambda}[(Su, u)/||S|| +$ $(Tv,v)/\|T\|] \leq B(|\lambda|^2 + \varepsilon)$ where B is a constant, independent of λ and ε . Suppose $W_N(S) \cap W_N(-T) \neq \phi$.T hen the distinct $[W_N(S), W_N(-T)] = \delta > 0$ and by continuity, $dist[W_N(S+\lambda), W_N(-(T+\lambda))] > \frac{\delta}{2}$, for small λ . Thus by convexity and continuity, any choice of u, v which satisfies the above conditions, must satisfy the inequality $|(Su, u)/||S|| + (Tv, v)/||T||| \ge \frac{\delta}{4}$ for λ small. But then we are lead to the inequality $|\lambda| \leq B(|\lambda|^2 + \varepsilon)$ for a suitable choice of arg λ and a small $|\lambda|$, which is impossible. Thus it is a contradiction since λ was not minimal, hence the proof.

ACKNOWLEDGMENT

The authors thank the referees for their careful reading of the manuscript.

REFERENCES

- [1] Blanco A., Boumazgour M and Rasford T.J., On the norm of elementary operators, J.London Math.Soc. 70(2004), 479-498.
- [2] Bonyo J.O and Agure J.O., Norm of a derivation and hyponormal operators, Int. Journal of Math. Anal. Appl. 342(2008), 386-393.
- [3] Du H.K., Wang H.K and Gao G.B., Norms of Elementary operators and derivations, Proc. Amer. Math. Soc. 4(2008), 1337-1348.
- [4] Nyamwala F.O., Norms of symmetrised Two-Sided Multiplication operators, Int. Journal of Math. Analysis, 35(2009), 1735-1744.
- [5] Nyamwala F.O and Agure J.O., Norms of Elementary operators in Banach Algebras. Int. Journal of Math Analysis, 9(2008), 411-424.
- [6] Okelo N.B., Agure J.O and Ambogo D.O., Norms of Elementary operators and Characterization of Norm-attainable operators, Int. Journal of Math Analysis, 24(2010),1197-1204.
- [7] Okelo N,B., Norm attainability of some elementary operators, Norm attainability E-Notes, 13(2013), 1-7.
- Seddik A., On numerical range and norm of elementary operators, [8] Linear and Multilinear Algebra, 52(2004), 293-302.
- [9] Seddik., Rank one operators and norm of elementary operators, Linear algebra and its Applications, 424(2007),177-183.
- [10] Stacho L.L. and Zalar B., On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Soc. Debrecen, 49(1996),127-134.
- Stampfli J.G., Derivation on B(H). The Range, ILLI.J. Math. 17(1973), [11] 518-524.
- [12] Stampfli J.G., On self-adjoint derivation ranges, Pac.J. Math, **82**(1979),257-277.

- [13] Timoney R.M., Norms of elementary operators, *Irish Math.Soc.Bulletin*, 46(2001),13-17.
- [14] Stampfli J.G and Williams J.P., On the essential numerical range, the essential spectrum and a problem of Halmos., *Acta.Sci.Math.* 33(1972),179-192.
- [15] Timoney R.M., Computing the norms of elementary operators, *Illinois J.Operator theory*, 47(2003),1207-1226.
- [16] Timoney R.M., Some formulae for norms of elementary operators, *J.Operator theory*, **57**(2007),121-145.