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I.    INTRODUCTION 

roblems involving nonlinear differential equations arise in 

various fields of science, mathematics and other related 

areas. Therefore, the task of obtaining the exact solutions 

of such types of differential equations is of great importance. 

The theory of Lie symmetry group of differential equations, 

developed by Sophus Lie, has played a significant role in 

understanding and constructing solutions of differential 

equations. 

For any given subgroup, an original differential equation 

can be reduced to a system with fewer independent variables 

which corresponds to group invariant solutions. In [5], 

Hongwei et al. discussed the Lie symmetries and the discrete 

symmetries of the Inviscid Burgers equation. By employing 

the Lie group method of infinitesimal transformations, they 

gave the symmetry reductions and similarity solutions of the 

equation. Based on the discrete analysis, they obtained two 

groups of discrete symmetry which lead to exact solutions of 

the inviscid Burgers equation. Bruzon [1] analyzed a general 

Boussinesq equation using the theory of symmetry reduction 

of partial differential equations. 

The Lie symmetry group analysis of this equation showed 

that it has only a two-parameter point symmetry group 

corresponding to traveling wave solutions. To obtain the exact 

solutions, he used the symmetry reduction to reduce the 

original nonlinear PDE to a nonlinear ODE and thereafter 

used the direct method and the ( /G G )-expansion method 

to arrive at the new solutions of the equation. Moreover, he 

expressed the traveling wave solutions in terms of the 

hyperbolic, trigonometric and rational functions. Zhang [14], 

in his work used Lie symmetry analysis in determining the 

exact solutions of the Sharma-Tasso-Olever (STO) equation. 

He obtained the vector fields of the equation, all the similarity 

reductions and subsequently investigated the exact solutions 

to the equation by means of power series method. Zhang on 

the other hand used similar approach in [15], [13] to obtain 

the exact solutions of Sawada –Kotera equation and seventh-

order KdV types of equation respectively.  

The solutions of other nonlinear PDEs using Lie symmetry 

analysis method can also be found in [2], [3], [4], [7],          

[8], [11]. 

In this paper, we have investigated the Lie groups, 

symmetry reductions and the exact solutions of the nonlinear 

fourth order evolution equation: 

22 0t x xx xx xxxxu u u u u u− − + =    (1) 

using lie symmetry analysis approach. 

II.    LIE SYMMETRY AND THE GEOMETRIC 

VECTOR FIELDS 

A) Geometric vector fields of Eq. (1) 

We let 
22t x xx xx xxxxu u u u u u = − − + and the 

infinitesimal generator X of (1) to be of the form: 

( , , ) ( , , ) ( , , )X x t u x t u x t u
x t u

  
  

= + +
  

       (2) 

where the coefficient functions ( ), , ,x t u ( , , ),x t u  and 

( ), ,x t u are to be determined. 

For the symmetry condition to be satisfied by (1), then:  
(4)

0 0X = = . 

Here , 
(4)X is the fourth prolongation of (2) . 

By Lie symmetry analysis, the following vector fields are 

obtained: 

1 2 34 , ,X x t u X X
x t u x t

    
= + − = =

    
 

P 
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Based on the adjoint representations of the vector fields, we 

obtain the following optimal systems for Eq. (1) as:  

 1 2 3 3 2, , ,X X X X X+ , (see [12])  

where 0   is an arbitrary constant. 

B) Lie groups admitted by Eq. (1) 

The one parameter groups iG  admitted by Eq. (1) are 

determined by solving the corresponding Lie equations below: 

1 : , 4 ,
dx dt du

X x t u
d d d  

  
  = = = −  

2 : 1, 0, 0
dx dt du

X
d d d  

  

= = =  

3 : 0, 1, 0
dx dt du

X
d d d  

  

= = =  

with the initial conditions that 
0x x



= = , 
0t t



= =  and 

0u u



= = . This leads to 

( ) ( )4

1 : , , ; , ,G x t u xe te ue   −→  

 

( ) ( )2 : , , ; , ,G x t u x t u → +    (3) 

( ) ( )3 : , , ; , ,G x t u x t u → +  

C) The symmetry reductions of Eq. (1) 

One of the main reasons for determining the symmetries of 

a differential equation is to use them in obtaining symmetry 

reductions and finding the exact solutions. Therefore we make 

use of the vector fields 1 2 3, ,X X X  and 3 2X X+  to 

reduce Eq. (1) to systems of ordinary differential equations 

(ODEs). 

The similarity variables and the symmetry reductions of Eq. 

(1) can be obtained by solving the characteristic equation 

given by: 

dx dt du

  
= = .                        (4) 

(a) For the vector field 1X , we have  

  
4

dx dt du

x t u
= =

−
 

with the invariant z taking the form 

1

4z xt
−

= . 

Therefore u  is expressed as : 

1

4 ( )u t z
−

=                        (5) 

Differentiating Eq. (5) and substituting into Eq. (1), we 

obtain the fourth order ODE given by: 

21 1
2 0

4 4
z          − − − − + =  (6) 

where 
d

dz


  = . 

(b) For the generator 2X , we have  

1 0 0

dx dt du
= =  

The invariant z t= , satisfies  

( )u z=     (7) 

Differentiating Eq. (7) and substituting in Eq. (1), we obtain 

a trivial solution given by: 

( , )u x t c=     (8) 

where c is an arbitrary constant. 

 

(c) For the generator 3,X  we have  

0 1 0

dx dt du
= =  

with the invariant z taking the form z x=  and u  given by : 

( )u z=     (9) 

Differentiating Eq. (9) and substituting in Eq. (1), we arrive at 

22 0       − − + =    (10) 

where 
d

dz


  = . 

(d) For the linear combination 3 2X X+ , we have  

1 0

dx dt du


= = . The invariant z  is given by 

z x t= − , where 0   is the wave velocity. On the 

other hand, u  takes the form: 

( )u z=    (11) 

Differentiating Eq. (11) and substituting in Eq. (1), we 

obtain: 
22 0         − − − + =  (12) 

where 
d

dz


  = . 

III.    THE EXACT SOLUTIONS OF EQ. (1) 

Here we consider the exact analytic solutions to the reduced 

equations by the power series method. Once we obtain the 

exact analytic solutions of the ordinary differential equations, 

then the exact power series solutions of the original Partial 

differential equation (1) are obtained. 

A) Exact power series solution of Eq. (6) 

We seek a solution in power series of the form: 
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0

( ) n

n

n

z c z


=

=   (13) 

Differentiating Eq. (13) and substituting in Eq. (6), we have 

1

1

0 0

1 2

0 0

2

0 0 0

4

0

1 1
( 1)

4 4

2 ( 1) ( 1)( 2)

( 1)( 2)

( 1)( 2)( 3)( 4) 0

n n

n n

n n

n n

n n

n n

n n n

n n n

n n n

n

n

n

c z n c z

n c z n n c z

c z c z n n c z

n n n n c z

 
+

+

= =

 

+ +

= =

  

+

= = =



+

=

− − +

  
− + + +  

  

   
− + +   
   

 
+ + + + + = 
 

 

 

  



      (14) 

On relabeling Eq. (14), we obtain 

 

0 1 2

1 1

2

1 2 0 2

1 0

2 4

1 0 0

4

1

1 1 1
4

4 4 4

2 ( 1)( 1 )( 2 ) 2

( 1 )( 2 ) 24

( 1)( 2)( 3)( 4) 0

n n

n n

n n

n
n

k n k

n k

n k
n

i k i n k

n k i

n

n

n

c c z nc z c c

k n k n k c c z c c

n k n k c c c z c

n n n n c z

 

= =



+ + −

= =



− + −

= = =



+

=

− − − −

− + + − + − −

− + − + − +

+ + + + + =

 






      (15) 

 

Collecting the terms with similar powers of z together, we 

have: 

2

0 1 2 0 2 4

1

1 2

0

2

0 0

4

1 1 1
4 2 24

4 4 4

2 ( 1)( 1 )( 2 )

( 1 )( 2 )

( 1)( 2)( 3)( 4) 0)

n n

n

n

k n k

k

n k

i k i n k

k i

n

n

c c c c c c c nc

k n k n k c c

n k n k c c c

n n n n c z



=

+ + −

=

− + −

= =

+


− − − + + − −



− + + − + −

− + − + −

+ + + + + =







 

      (16) 

From Eq. (16), we have that for 0n = , 
2

0 0 21 2
4

96 6 12

c c cc c
c = + +    (17) 

For 1n  , we obtain the recurrence relation: 

 

4

1 2

0

2

0 0

1

( 1)( 2)( 3)( 4) 4 4

2 ( 1)( 1 )( 2 )

( 1 )( 2 ) )

n n
n

n

k n k

k

n k

i k i n k

k i

c nc
c

n n n n

k n k n k c c

n k n k c c c

+

+ + −

=

− + −

= =


= +

+ + + + 

+ + + − + −

+ + − + −





 

       (18) 

where ( 1,2,.....)ic i =  are arbitrary constants. 

For 1,2n =  we obtain; 

2 21
5 1 3 2 0 3 0 1 2

1
6 4 3 2

60 2

c
c c c c c c c c c

 
= + + + + 

 
 

)

2

6 2 1 4 2 3 0 4

2 2

0 1 3 0 2 1 2

1 3
24 36 12

360 4

12 4 2

c c c c c c c c

c c c c c c c


= + + +



+ + +

 

Hence the power series solution of Eq. (6) can expressed as : 

2 3 4

0 1 2 3 4

1

2
2 40 0 21 2

0 1 2

1

1 2

0

4

2

0 0

( )

96 6 12

1

( 1)( 2)( 3)( 4) 4 4

2 ( 1)( 1 )( 2 )

( 1 )( 2 ) )

n

n

n

n n

n

n

k n k

k

n k
n

i k i n k

k i

z c c z c z c z c z

c c cc c
c c z c z z

c nc

n n n n

k n k n k c c

n k n k c c c z




+

+

=



=

+ + −

=

+

− + −

= =

= + + + +

 
= + + + + + 

 


+ +

+ + + + 

+ + + − + −

− + − + −









 

Thus the exact power series solution of Eq. (1) is:  

1 1 3

2 3 14 2 4
0 1 2 3

52
40 0 21 2 4

1

1 2

0

5

4 4
2

0 0

( , )

96 6 12

1

( 1)( 2)( 3)( 4) 4 4

2 ( 1)( 1 )( 2 )

( 1 )( 2 ) )

n n

n

n

k n k

k

nn k
n

i k i n k

k i

u x t c t c xt c x t c x t

c c cc c
x t

c nc

n n n n

k n k n k c c

n k n k c c c x t

− − −
−

−



=

+ + −

=

+
−

+

− + −

= =

= + + +

 
+ + + 
 


+ +

+ + + + 

+ + + − + −

+ + − + −







      (19) 

According to [14], the solution to partial differential 

equations, in mathematics and physical applications, can 
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conveniently be expressed in approximate form. Thus, the 

solution of Eq. (1) can be expressed as: 

 

)

1 1 3

2 3 14 2 4
0 1 2 3

52
40 0 21 2 4

3

2 2 51 2
1 3 2 0 3 0 1 2

2

2 1 4 2 3 0 4

7

2 2 6 4
0 1 3 0 2 1 2

( , )

96 6 12

1
6 4 3 2

60 2

1 3
24 36 12

360 4

12 4 2 ......

u x t c t c xt c x t c x t

c c cc c
x t

c
c c c c c c c c x t

c c c c c c c

c c c c c c c x t

− − −
−

−

−

−

= + + +

 
+ + + 
 

 
+ + + + + 

 


+ + + +



+ + + +

(20) 

B) The stationary solution to Eq. (10) 

Here we seek a solution of Eq. (10) in power series of the 

form of Eq. (13). Substituting Eq. (13) into Eq. (10), we have 

 

1 2

0 0

2

0 0 0

4

0

2 ( 1) ( 1)( 2)

( 1)( 2)

( 1)( 2)( 3)( 4) 0

n n

n n

n n

n n n

n n n

n n n

n

n

n

n c z n n c z

c z c z n n c z

n n n n c z

 

+ +

= =

  

+

= = =



+

=

  
− + + +  

  

   
− + +   
   

 
+ + + + + = 
 

 

  



            (21) 

Relabeling Eq. (21) and collecting the terms with similar 

powers of z together, we obtain: 

2

1 2 0 2 4

1 2

1 0

2

0 0

4

4 2 24

2 ( 1)( 1 )( 2 )

( 1 )( 2 )

( 1)( 2)( 3)( 4) 0}

k n k

n k

n k

i k i n k

k i

n

n

c c c c c

k n k n k c c

n k n k c c c

n n n n c z

 

+ + −

= =

− + −

= =

+

− − +


+ − + + − + −



− + − + −

+ + + + + =

 



             (22) 

From Eq. (22), we have that for 0n = , 
2

0 21 2
4

6 12

c cc c
c = +    (23) 

For 1n  , we obtain the recurrence relation: 

( )( )

( )( )

4

0

1 2

2

0 0

1
2 ( 1)

( 1)( 2)( 3)( 4)

1 2

1 2 }

n

n

k

k n k

n k

i k i n k

k i

c k
n n n n

n k n k c c

n k n k c c c

+

=

+ + −

− + −

= =


= +

+ + + + 

+ − + −

+ + − + −





      (24) 

for all 1,2,...n =  

Thus, for arbitrary chosen constants ( )0,1,2,3ic i = , we 

obtain: 

( )2 2

5 1 3 2 0 3 0 1 2

1
12 8 6 4

120
c c c c c c c c c= + + +  

( )2 2 2

6 1 4 2 3 0 4 0 1 3 0 2 1 2

1
24 36 12 12 4 2

360
c c c c c c c c c c c c c c= + + + + +   

and so on. 

Hence the power series solution Eq. (10) can be expressed 

as: 

( )( )( )

( )( )( )

( )( )

2 3 4 4

0 1 2 3 4 4

1

2
2 3 40 21 2

0 1 2 3

1

1 2

0

4

2

0 0

( )

6 12

1

( 1) 2 3 4

2 1 1 2

1 2 )

n

n

n

n

n

k n k

k

n k
n

i k i n k

k i

z c c z c z c z c z c z

c cc c
c c z c z c z z

n n n n

k n k n k c c

n k n k c c c z




+

+

=



=

+ + −

=

+

− + −

= =

= + + + + +

 
= + + + + + 

 

+
+ + + +


 + + − + −


+ + − + −









      

                       (25) 

Thus, the exact stationary solution to Eq. (1) is given as: 

( )( )( )

( )( )( )

( )( )

2
2 3 40 21 2

0 1 2 3

1

1 2

0

4

2

0 0

( , )
6 12

1

( 1) 2 3 4

2 1 1 2

1 2 )

n

n

k n k

k

n k
n

i k i n k

k i

c cc c
u x t c c x c x c x x

n n n n

k n k n k c c

n k n k c c c x



=

+ + −

=

+

− + −

= =

 
= + + + + + 

 

+
+ + + +


 + + − + −


+ + − + −







        (26) 

C) The traveling wave solution for Eq. (12) 

Substituting Eq. (13) into Eq. (12), he have: 
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( )

( ) ( )

( )( )

( )( )( ) ( )

1

0

1 2

0 0

2

0 0 0

4

0

1

2 1 ( 1) 2

1 2

1 2 3 4 0

n

n

n

n n

n n

n n

n n n

n n n

n n n

n

n

n

n c z

n c z n n c z

c z c z n n c z

n n n n c z




+

=

 

+ +

= =

  

+

= = =



+

=

− +

  
− + + +  

  

   
− + +   
   

 
+ + + + + = 
 



 

  



 

 

          (27) 

On relabeling Eq. (27) and collecting the terms with similar 

powers of z together, we obtain: 

( ) ( )( )

( )( )

( ) ( ) ( )( ) 

2

1 1 2 0 2 4

1 1 2

1 0

2

0 0

4

4 2 24

1 2 ( 1) 1 2

1 2

1 2 3 4 0

n

n k n k

n k

n k

i k i n k

k i

n

n

c c c c c c

n c k n k n k c c

n k n k c c c

n n n n c z






+ + + −

= =

− + −

= =

+

− − − +


− + + + + − + −



+ + − + −

− + + + + =

 



             (28) 

From Eq. (28), we have that for 0n = ; 
2

0 21 1 2
4

24 6 12

c cc c c
c


= + +        (29) 

For 1n  , we obtain the following recurrence relation: 

( ) ( ) ( )
( )

( ) ( )( )

( ) ( )

4 1

1 2

0

2

0 0

1
1

1 2 ( 3) 4

2 1 1 2

1 2

{

}

n n

n

k n k

k

n k

i k i n k

k i

c n c
n n n n

k n k n k c c

n k n k c c c

+ +

+ + −

=

− + −

= =

= +
+ + + +

+ + + − + −

+ + − + −





 

         (30) 

Thus, for arbitrary chosen constants ( )0,1,2,3ic i = we 

obtain: 

( )2 2

5 2 1 2 2 0 3 0 1 3

1
2 12 8 6 4

120
c c c c c c c c c c= + + + +   
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12 4 2
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+ + +

 

       (31) 

and so on. 

Hence the power series solution of Eq. (12) can be 

expressed as: 
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
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                    (32) 

Therefore, the exact traveling wave solution to Eq. (1) is 

given as: 
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      (33) 

Note: Power series is a useful and powerful method for 

solving higher order nonlinear ordinary differential equations 

(ODE). Therefore, the power series solutions (19), (26) and 

(33) are the exact analytic solutions to Eq. (1). 

 

Remark: According to Olver P.J [10], if ( , )u x t=  is a 

solution of Eq. (1), so are the functions: 
4

1

2

3

( ) ( , ) ( , )

( ) ( , ) ( , )

( ) ( , ) ( , )

G x t xe te e

G x t x t

G x t x t

    

   

   

− − −=

= −

= −

    (34) 

That is, a symmetry group of Eq. (1) is a local group of 

transformation G with the property that whenever ( )u x=  

is a solution of Eq. (1) and whenever .g  is defined for 

g G , then .u g=  is also a solution of Eq. (1). Thus, 

there is a possibility of constructing a whole family of 

solutions just by transforming a known solution by all 

possible group elements. 

Therefore, using 1G , the solutions (19), (26) and (33) can 

respectively be expressed as: 
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2G  and 3G  can also be used in a similar manner. 

 

IV.    CONCLUSION 

In this paper, we have obtained the geometric vector fields, 

Lie groups and the symmetry reduction of the nonlinear 

fourth order evolution equation (1) using Lie symmetry 

analysis method. Moreover, all the group invariant solutions 

to the equation have been considered based on the optimal 

system method and the exact analytic solutions to the 

equation investigated using power series approach. Finally, 

we have shown that a whole family of solutions can be 

constructed just by transforming a known solution by all the 

possible group elements.  
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