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Abstract— This paper presents the Generalization of Wall Panel 

Theory (GWPT), placing the walls that make up the column in a 

structural core shape with an angulation different from 

orthogonality. As for the geometry of the structural core C and 

double T, the inclination analysis of the walls is performed in order 

to diminish the sheer forces for the effective structural launching 

for columns, seeking to minimize the stresses with the mere change 

of the wall inclination. Finally, we use the particular case of double 

T core with walls orthogonal to each other and validate the 

generalized formulations in this article, concluding the total 

resumption of the values of sectoral ordinates. In addition, the first 

three modes of vibration of the C cores and double T are used, in 

conclusion, 95.89 % and 95.81 % of convergence between the 

values obtained via CMT and FEM, respectively. 

 
Keywords— Wall Panel Theory (WPT), Generalization 

(GWPT), Continuous Medium Technique (CMT), Sectoral Inertia 

and Optimal Positioning of Wall 

 

I. INTRODUCTION 

he cross sections of the tall columns (also called slender 

columns, and, for example, the bridge columns are 

mentioned) become economically viable if adopted with hollow 

section and thin walls. In cases of asymmetric sections, the 

combined effect of flexure and torsion is activated due to non-

coincidence of the centers of gravity (𝐶𝐺) and torsion (𝐷). 

The determination of the thin-walled cross-sectional 

properties, such as the placement of the torsion center and the 

sectoral inertia 𝐼𝜔, is formulated in Vlassov (1962). However, 

in determining the absolute sectoral ordinate diagram 𝜔𝑝𝑐 and 

the resulting sectoral inertia, although Vlassov presents the 

integral formulation, in the specific literature there are only 

applications in sections with curved or orthogonal walls 

between each other. Still, in the aforementioned work, there is 

an exemplification of the walls with distinctive inclination of 

the orthogonality between the panels, however in numerical 

exercises and without the proper generalized trigonometric 

formulation. In short, for Vlassov (1962, p. 194 and 200) the 

analysis of inclined walls is performed in numerical exercises.  

And it is because of this shortcoming that, in this paper, the 

generalization of the wall panel theory (GWPT) presented in 
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Barbosa (1978) will be formulated. Vlassov's notation will be 

adopted and extended via generalized trigonometric equation, 

thus formulating the GWPT.  

Years later, in Murray (1986, p. 54 - 192), Kollbrunner and 

Basler (1969), and Campanari (1985, v. 2, p. 723 - 749) the 

theory of thin walls postulated by Vlassov (1962) is recovered, 

however, with new (purely numerical) examples for inclined 

thin walls, always through input data, and without proper 

postulation of the generalized trigonometric formulation. Given 

the analysis of the overall stability of structural cores, Zalka 

(2000, p. 121 - 153 and 238 - 277) stands out. However, in both 

publications, the equation is formulated only for orthogonal 

walls between each other.  

For the structural core columns, and under the approach of 

the formation of wall panels, consisting of sheet metal, there is 

the coincidence of the placement of the center of gravity (𝐶𝐺) 

and the center of mass (𝐶𝑀), which originates from the 

homogeneity of the mechanical properties (which is due to the 

steel machining process). See such placement in Figure 1 (a). 

In the case of reinforced concrete columns, the location of the 

CG of the raw section with the CM is not coincident. Therefore, 

the transformation of the coordinates from the CM to CG will 

be necessary (see Figure 1 c). After such coordinate 

transformation, the dynamic formulation of the column is 

composed of a reinforced concrete structural core, together with 

the static portion of the wall panel theory referenced in the 

center of gravity of the cross section. See Figure 1 (b). 
 

 

Fig. 1.  Geometric Center Distribution: (a) for metal section; (b) for reinforced 

concrete column; and (c) coordinate transformation from the CM to the CG of 

the reinforced concrete section. 
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The formulation of the wall panels is initially presented in 

Mancini (1972) with a single structural element (see Figure 1 

a). In Barbosa (1978), Tso (1983) and Smith and Taranath 

(1972), the structural cores are solved via flexure-torsion theory 

and subdivided into wall panels. In such scientific works, the 

wall panel theory (WPT) is formulated, starting from an open 

cross section column and orthogonal thin walls, being partially 

braced by lintels (with length 𝐿𝐿 and spaced from axis to axis 

from distance ℎ ). The structural core shape, studied by 

researchers in the 1970s and 1980s, is characterized by five 

walls numbered from (1) to (5) and with four intersections. As 

presented in Laier (1984) and Laredo (1977), the dynamic 

analysis of the structures is conveniently processed via the 

continuous technique, basically consisting in considering the 

stiffness of the horizontal connecting elements (slabs and 

beams) through properties and stresses distributed at the height 

of the column. In addition, in the mentioned work of 1984, the 

analysis of the wall vibration is processed, recommending the 

beginning of the contributions of the continuous medium 

technique (CMT) applied to dynamic problems. In this paper 

we will use the dynamic formulation of CMT in generalized 

inclination thin-walled bridge columns, see Melo & Barbosa 

(2020 a,b).  

The use of continuous technique over discrete models, such 

as the finite element method (BREBRIA; FERRANTE, 1975) 

and Dhatt et al. (2005), finite difference method (GUELFOND, 

1963), boundary element method among others, is motivated by 

simplification of processing (consequence of the reduced 

number of parameters involved). The number of parameters via 

discrete finite element analysis is a function of the discretization 

mesh and how far-fetched and refined the mesh needs to be. In 

the search for displacements, rotations and stresses, the use of 

more complex interpolating functions or the refinement of the 

mentioned mesh is necessary. 

In the dynamic modeling of vertical panels via the continuous 

medium technique, Stamato (1980); Laier (1984) and Simith 

and Coull (1991) reiterate that the column locking occurs 

horizontally along the height. Thus, the slabs or simply the deck 

(in the case of bridges) are employed as elements of infinite 

stiffness in their planes and the transverse stiffness of such 

elements is neglected. In order to justify the simplification of 

the structural operation of horizontal locks as diaphragms, 

Biggs (1964) is cited and the fact that magnitudes of horizontal 

movements are much larger than those observed in the vertical 

direction is reinforced, and, therefore, the latter is discarded. 

II. WALL PANEL THEORY 

A. Geometric Properties of Thin-Walled Cross-Section 

under Generalized Structural Core Form 

The generalization of the wall panel theory will be processed 

in this paper item by imposing generic inclination for all the 

walls that make up the structural core. The notation adopted for 

the placement of the centroidal axes (𝑦 ≡ 𝑦
𝐶𝐺

, 𝑧 ≡ 𝑧𝐶𝐺) and 

the auxiliary (𝑥∗, 𝑦∗) axes is presented in Figure 2. 

From the provisional point P located at the intersection of 

wall panels (1) and (3), as shown in figure 2, the diagramming 

of the sectoral ordinates 𝜔𝑝 with arbitrary pole P is made. For 

such, the convention defined in Vlassov (1962) and the vector 

area calculation between two vectors is used, concluding 

diagrammatically 𝜔𝑝 that which is presented in Figure 3. 

Where: Δ𝜔1 =  Δ𝜔3 = 0;  Δ𝜔2 = 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2) ;   
Δ𝜔4 = −𝑏1. 𝑏4. sin(𝜃1 + 𝜃4) − 𝑏2. 𝑏4. sin(𝜃2 + 𝜃4) e 

Δ𝜔5 = 𝑏3. 𝑏5. sin(𝜃3 + 𝜃5). And: 𝑏𝑖 is the length at cross 

section of the ith wall panel, and 𝜃𝑖 is the angle of incidence of 

the wall 𝑖 in relation to the auxiliary axis 𝑥∗ originating from 

the provisional pole P. 

By calculating the coordinates of the center of gravity (CG) 

of the cross section presented in Figure 2, the position of the 

CG is defined at the expense of the provisional pole P and the 

auxiliary axes 𝑥∗ and 𝑦∗, as: 

𝑏𝐶𝐺𝑧
=

𝑏1
∗. cos 𝜃1 + 𝑏2

∗. cos 𝜃2 + 𝑏3
∗. cos 𝜃3 + 𝑏4

2. cos 𝜃4 + 𝑏5
2. cos 𝜃5

2. (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5)
       1 𝑎) 

𝑏𝐶𝐺𝑦
=

𝑏1
∗. sin 𝜃1 + 𝑏2

∗. sin 𝜃2 + 𝑏3
∗. sin 𝜃3 + 𝑏4

2. sin 𝜃4 + 𝑏5
2. sin 𝜃5

2. (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5)
        (1 𝑏) 

 
Fig. 2.  Generalized placement of the walls in the structural core. 

 
Fig. 3.  Sectoral ordinate diagrams ωp with temporary pole P. 

 
Fig. 4.  Coordinate diagram for the inclined walls: (a) axis y and (b) axis z. 
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with: 𝑏1
∗ = 𝑏1

2 + 2. 𝑏1. 𝑏2 + 2. 𝑏1. 𝑏4;  𝑏2
∗ = 𝑏1

2 + 2. 𝑏2. 𝑏4;  

𝑏3
∗ = 𝑏3

2 + 2. 𝑏3. 𝑏5. The coordinate diagrams 𝑦 and 𝑧, of the 

structural core, are presented in Figure 4. Coordinates 𝑦
𝑖
 and 𝑧𝑖 

of the final ends of the wall panels 𝑖, are expressed by: 𝑧1 = 𝑧𝑝 +

𝑏1. cos 𝜃1; 𝑧2 = 𝑧1 + 𝑏2. cos 𝜃2; 𝑧3 = 𝑧𝑝 + 𝑏3. cos 𝜃3; 𝑧4 = 𝑧2 +

𝑏4. cos 𝜃4; 𝑧5 = 𝑧3 + 𝑏5. cos 𝜃5; 𝑦1 = 𝑦𝑝 − 𝑏1. sin 𝜃1; 𝑦2 = 𝑦1 −

𝑏2. sin 𝜃2; 𝑦3 = 𝑦𝑝 − 𝑏3. sin 𝜃3; 𝑦4 = 𝑦2 − 𝑏4. sin 𝜃4 and 𝑦5 = 𝑦3 −

𝑏5. sin 𝜃5. With: 𝑧𝑝 = −𝑏𝐶𝐺𝑧
 e  𝑦𝑝 = 𝑏𝐶𝐺𝑦

 

Due to the integration of the coordinate diagrams 𝑦  (see 

Figure 4a) and coordinates 𝑧 (see Figure 4b) by the diagram 𝜔𝑝 

shown in Figure 3, the placement of the torsional center D is 

concluded through the geometric interpretation, defining, thus, 

the position of the torsional center by the distances 𝑑𝑦 and 𝑑𝑧 

and shown in Figure 2, resulting in: 

𝑑𝑦 =
𝑡

6. 𝐼𝑦
. {Δ𝜔2𝑎 . [−𝑑2. 𝑧1 + (𝑏2 − 𝑑2). 𝑧2]

+ Δ𝜔2. [𝑧2. (3. 𝑏4 + 2. 𝑏2 − 2. 𝑑2) + 3. 𝑏4. 𝑧4]
+ Δ𝜔4. (𝑏4. 𝑧2 + 2. 𝑏4. 𝑧4)
− Δ𝜔5. (𝑏5. 𝑧3 + 2. 𝑏5. 𝑧5)}                                (2𝑎) 

𝑑𝑧 =
𝑡

6. 𝐼𝑧
. {Δ𝜔2. [𝑏2. 𝑦1 + 𝑦2. (2. 𝑏2 + 3. 𝑏4) + 3. 𝑏4. 𝑧4]

+ Δ𝜔4. (𝑏4. 𝑦2 + 2. 𝑏4. 𝑦4)
+ Δ𝜔5. (𝑏5. 𝑦3 + 2. 𝑏5. 𝑦5)}                              (2 𝑏) 

 

with: Δ𝜔2𝑎 =
𝑑2

𝑏2
. Δ𝜔2;   𝑑2 =

|𝑧1|.𝑏2

|𝑧1|+|𝑧2|
;   𝐼𝑧 = ∑ {𝐼𝑧𝑖

+ 𝐴𝑖 . Δ𝑦𝑖
2}5

𝑖=1 ; 

𝐼𝑦 = ∑ {𝐼𝑦𝑖
+ 𝐴𝑖 . Δ𝑧𝑖

2}5
𝑖=1 ; and: Δy𝑖 = |𝑦𝐶𝐺𝑖

∗ − 𝑏𝐶𝐺𝑦
| ; Δy𝑖 = |𝑥𝐶𝐺𝑖

∗ − 𝑏𝐶𝐺𝑧
|; 

𝐼𝑧𝑖
=

𝐼𝑥𝑖
∗∗+𝐼𝑦𝑖

∗∗

2
+

𝐼𝑥𝑖
∗∗−𝐼𝑦𝑖

∗∗

2
. cos(2. 𝜃𝑖) and 𝑡 is the thickness of the walls. 

Finally, when drawing the absolute sectoral ordinate diagram 

𝜔𝑝𝑐 with a scanning pole at the torsional center D, as shown in 

Figure 5, pointing out that the torsional center D is the arbitrary 

position where, when transverse forces are applied, only flexure 

efforts are activated. It is also recalled that the moment of 

sectoral inertia 𝐼𝜔   equals the mechanical strength of the 

structural core to the combined action of flexure-torsion. 

 

 
 

Fig. 5.  Absolute coordinate diagram ωpc, with scanning pole in the torsional 

center. 
resulting by ordinates 𝜔𝑝𝑐𝑓𝑖

 at the end edges of the wall panels 

𝑖, as follows: 

𝜔𝑝𝑐𝑓1
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓1
                                                                         (3 𝑎) 

𝜔𝑝𝑐𝑓2
= 𝜔𝑝𝑐𝑓1

+ Δ𝜔𝑝𝑐𝑓2
                                                                        (3 𝑏) 

𝜔𝑝𝑐𝑓3
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓3
                                                                         (3 𝑐) 

𝜔𝑝𝑐𝑓4
= 𝜔𝑝𝑐𝑓2

+ Δ𝜔𝑝𝑐𝑓4
                                                                       (3 𝑑) 

𝜔𝑝𝑐𝑓5
= 𝜔𝑝𝑐𝑓3

+ Δ𝜔𝑝𝑐𝑓5
                                                                        (3 𝑒) 

with: 𝜔𝑝𝑐𝑃
= 𝑑𝑦. 𝑑𝑧;  Δ𝜔𝑝𝑐𝑓2

= −𝑏2. (𝑑𝑦. cos 𝜃2 − 𝑑𝑧. sin 𝜃2) + 𝑏1. 𝑏2 . sin(𝜃1 − 𝜃2) ; 

Δ𝜔𝑝𝑐𝑓1
= 𝑏1. (𝑑𝑦. cos 𝜃1 − 𝑑𝑧. sin 𝜃1);  Δ𝜔𝑝𝑐𝑓3

= −𝑏3. (𝑑𝑦. cos 𝜃3 − 𝑑𝑧. sin 𝜃3); 

Δ𝜔𝑝𝑐𝑓4
= 𝑏4. (𝑑𝑦. cos 𝜃4 − 𝑑𝑧. sin 𝜃4) + 𝑏1. 𝑏4. sin(𝜃1 − 𝜃4) + 𝑏2. 𝑏4. sin(𝜃2 − 𝜃4)  and 

Δ𝜔𝑝𝑐𝑓5
= 𝑏5. (𝑑𝑦. cos 𝜃5 − 𝑑𝑧. sin 𝜃5) + 𝑏3. 𝑏5 . sin(𝜃3 − 𝜃5). 

Through quadratic integration of the diagram 𝜔𝑝𝑐 by the 

thickness 𝑡 of the walls, the sectoral inertia 𝐼𝜔 = 𝑡. ∫ (𝜔𝑝𝑐)
2

𝑑𝓈
𝓈

 

is expressed by: 

𝐼𝜔 =
𝑏1

6
. 𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓1

) +
𝑏1

6
. 𝜔𝑝𝑐𝑓1

. (𝜔𝑝𝑐𝑃
+ 2. 𝜔𝑝𝑐𝑓1

) + 

+
𝑏2

6
. 𝜔𝑝𝑐𝑓1

. (2. 𝜔𝑝𝑐𝑓1
+ 𝜔𝑝𝑐𝑓2

) +
𝑏2

6
. 𝜔𝑝𝑐𝑓2

. (𝜔𝑝𝑐𝑓1
+ 2. 𝜔𝑝𝑐𝑓2

) + 

+
𝑏3

6
. 𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓3

) +
𝑏3

6
. 𝜔𝑝𝑐𝑓3

. (𝜔𝑝𝑐𝑃
+ 2. 𝜔𝑝𝑐𝑓3

) + 

+ 
𝑏4

6
. 𝜔𝑝𝑐𝑓2

. (2. 𝜔𝑝𝑐𝑓2
+ 𝜔𝑝𝑐𝑓4

) +
𝑏4

6
. 𝜔𝑝𝑐𝑓4

. (𝜔𝑝𝑐𝑓2
+ 2. 𝜔𝑝𝑐𝑓4

) + 

+
𝑏5

6
. 𝜔𝑝𝑐𝑓3

. (2. 𝜔𝑝𝑐𝑓3
+ 𝜔𝑝𝑐𝑓5

) +
𝑏5

6
. 𝜔𝑝𝑐𝑓5

. (𝜔𝑝𝑐𝑓3
+ 2. 𝜔𝑝𝑐𝑓5

)         (4) 

B. Geometric Properties of Thin-Walled Cross-Section 

under Generalized Structural double T form 

Figure 6 shows the configuration of the cross section in 

double T with generalized positioning of the wall panels. The 

inclinations (𝜃𝑗) of the jth panel are also shown.  

 

 
 

 

Fig. 6.  Generalized placement of the walls in the structural core double T. 

Aiming at the positioning of the torsional center D, the 

diagrams of provisional sectoral ordinates 𝜔𝑝 (see figure 7 a), 

the 𝑦 coordinates of the jth panel (see figure 7 b), and the 𝑧 

coordinates (in figure 7 c) are drawn. The 𝑦 and 𝑧 coordinates 

of the wall panels are measured from the center of gravity of the 

cross section. 
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Fig. 7.  Generalized double T column: (a) 𝜔𝑝 diagram, (b) 𝑦 diagram and (c) 𝑧 

diagram. 

 

Then, Figure 8 (a) shows the scan direction on the right C 

core, which composes the double T column, while Figure 8 (b) 

shows the positive scan on the left core. Figure 8 (c) shows the 

configuration of the absolute sectoral ordinate diagram 𝜔𝑝𝑐. 

 

 
 

Fig. 8.  Double T: scan on the right core (a), (b) on the left, and (c) ωpc 

diagram. 

 

In conclusion, the sectoral inertia 𝐼𝜔 , generalized in the 

sectoral ordinate diagram 𝜔𝑝𝑐 (see Figure 8 c), is expressed as 

follows: 

𝐼𝜔 ≡ 𝑡. {
𝑏1

6
. 𝜔𝑝𝑐𝑃

. Δ𝑃1 +
𝑏1

6
. 𝜔𝑝𝑐𝑓1

. Δ1𝑃 +
𝑏2

6
. 𝜔𝑝𝑐𝑓1

. Δ12 +
𝑏2

6
. 𝜔𝑝𝑐𝑓2

. Δ21 + 

               +
𝑏3

6
. 𝜔𝑝𝑐𝑃

. Δ𝑃3 +
𝑏3

6
. 𝜔𝑝𝑐𝑓3

. Δ3𝑃 +
𝑏4

6
. 𝜔𝑝𝑐𝑓2

. Δ24 +
𝑏4

6
. 𝜔𝑝𝑐𝑓4

. Δ42 + 

               +
𝑏5

6
. 𝜔𝑝𝑐𝑓3

. Δ35 +
𝑏5

6
. 𝜔𝑝𝑐𝑓5

. Δ53 +
𝑏6

6
. 𝜔𝑝𝑐𝑓1

. Δ16 +
𝑏6

6
. 𝜔𝑝𝑐𝑓6

. Δ61 + 

               +
𝑏7

6
. 𝜔𝑝𝑐𝑃

. Δ𝑃7 +
𝑏7

6
. 𝜔𝑝𝑐𝑓7

. Δ7𝑃 +
𝑏8

6
. 𝜔𝑝𝑐𝑓6

. Δ68 + 
𝑏8

6
. 𝜔𝑝𝑐𝑓8

. Δ86 + 

+
𝑏9

6
. 𝜔𝑝𝑐𝑓7

. Δ79 +
𝑏9

6
. 𝜔𝑝𝑐𝑓9

. Δ97}                                                             (5) 

with the parameters of Equation (5) presented in the appendix. 

The numerical validation of the sectoral ordinates required in 

Equation (4) is easily accomplished by adopting the sub-case of 

thin-walled double T column with wall panels orthogonal to 

each other, see Figure 9, resulting in: 𝜃1 = 𝜃5 = 𝜃9 = 900, 

𝜃6 = 𝜃7 = 1800, 𝜃4 = 𝜃8 = 2700, 𝜃2 = 00, and  𝜃3 = 3600. 

 
 

Fig. 9.  Diagram of sectoral ordinates ωpc for asymmetric double T section 

and with walls orthogonal to each other. 

 

Thus, the main sectoral ordinate diagram 𝜔𝑝𝑐 for the section 

without any symmetry is calculated by means of the geometric 

procedure previously defined, as well as in the determination of 

sectoral ordinate increments Δ𝜔(𝑖) in the generic wall panel i, 

resulting in main sectoral ordinates, which fully reproduce the 

expressions in Vlassov (1962) and Kollbrunner & Basler 

(1969), as: 

 
𝜔𝑝1

= 𝑑𝑧. (𝑑𝑦 − 𝑏4) − 𝑏1𝑎. (𝑏4 − 𝑑𝑦);          𝜔𝑝3
= 𝑑𝑦. (𝑏7𝑎 + 𝑑𝑧); 

𝜔𝑝2
= −𝑑𝑧. (𝑏4 − 𝑑𝑦) + 𝑏1𝑏. (𝑏4 − 𝑑𝑦);       𝜔𝑝4

= 𝑑𝑦. (𝑑𝑧 − 𝑏7𝑏); 

𝜔𝑝
𝑖(1)

= 𝑑𝑧. (𝑑𝑦 + 𝑏3 − 𝑏4) − 𝑏1𝑎. (𝑏3 + 𝑏4 − 𝑑𝑦); 

𝜔𝑝
𝑓(1)

= 𝑑𝑧. (𝑑𝑦 − 𝑏2) + 𝑏7𝑎 . (𝑏2 + 𝑑𝑦);       𝜔𝑝5
= 𝑑𝑦. 𝑑𝑧; 

𝜔𝑝
𝑖(2)

= 𝑑𝑧. (𝑑𝑦 − 𝑏5) − 𝑏7𝑏 . (𝑏5 + 𝑑𝑦);        𝜔𝑝6
= −𝑑𝑧. (𝑏4 − 𝑑𝑦); 

𝜔𝑝
𝑓(2)

= −𝑑𝑧. (𝑏4 − 𝑏6 − 𝑑𝑦) + 𝑏1𝑏. (𝑏4 − 𝑑𝑦). 

III. STRUCTURAL CORE COLUMN MODELING 

A. Contribution of Wall Panel inclination in structural 

laying of straight bridge columns 

 

In order to exemplify the generalization carried out in item II 

(A) of this article, the variation of the sectoral inertia 𝐼𝜔 is used 

in detriment of the inclinations of wall panels (2) and (3), of 

which it is emphasized that the bimoment is directly 

proportional to the sectoral inertia (see more details in Flexural-

Torsion Theory), reference by Mori and Munaiar Neto (2017) 

is made to this statement. The analysis is carried out for a 

straight bridge column, in which the bimoment and the resulting 

cross section flexure will be reduced by simply inclining the 

side walls (2) and (3). Tables 1 to 3 show sectoral inertia 𝐼𝜔 

values to the detriment of the inclination variation 𝜃2 and 𝜃3. In 

such analysis, the inclinations presented in Figure 10 are 

considered. 
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Fig. 10.  Structural core geometry for analysis of the inclination variation of 

wall panels (2) and (3): (a) floor plan and (b) applicability in bridges with 

straight deck. 

 

The sector inertia 𝐼𝜔, see Equation (4), is dependent on the 

inclinations of the walls (1) to (5) of the structural core column. 

The configuration of such column is shown in Figure 9. 

However, it is convenient to adopt walls (1), (4), and (5) 

perpendicular to the bridge deck direction for straight bridges 

(see Figure 10 b). The structural engineer has the margin to 

project economic efficiency combined with the safety of the 

structure by inclining walls (2) and (3), thus seeking lesser 

internal forces (bimoment), deriving optimized resistant 

reinforcement bar (for the case of reinforced concrete column) 

and reduced thickness for the occurrence of metal columns. 

Table 1 presents sectoral moments of inertia 𝐼𝜔 for the 

variation of the wall inclination (2) under the fixed positioning 

of the wall (3) in 𝜃3 of 285⁰. Tabulation is performed for three 

relative wall thicknesses, which are: 𝜂3 = 1
40⁄  and 𝜂4 = 4 

presented as curve 1, the ratios 𝜂3 = 1
30⁄   and 𝜂4 = 10  for curve 

2, and finally, in curve 3, 𝜂3 = 1
100⁄  and 𝜂4 = 5 is used. 

 

TABLE I 

VALUES OF  𝐼𝜔  (𝑥 107) 𝑚6
  FOR THE VARIATION OF THE INCLINATION OF 

WALLS (2) E (3) WITH 𝜃3 AND 285𝑜 

𝜃2 curve 1 curve 2 curve 3 

𝟏𝟓𝟎 0.639 0.361 53.103 

𝟑𝟎𝟎 0.602 0.349 49.580 

𝟒𝟓𝟎 0.509 0.298 41.449 

𝟔𝟎𝟎 0.387 0.226 31.219 

𝟕𝟓𝟎 0.222 0.127 17.886 

𝟖𝟓𝟎 0.035 0.020   2.839 

 

In this first analysis (Table I), the inclination of wall (3) is 

kept outdated 15𝑜 with respect to the skeleton axis of wall (1), 

to avoid functioning as a cutting wall, maintaining the three-

dimensional configuration of the wall. Whereas, in Table II the 

same variation of the inclination of the wall panel (2) is carried 

out, but for 𝜃3 equal to 322.5⁰, and the average position in the 

variation range of the inclination is imposed to wall (3). 
 

TABLE II 

VALUES OF  𝐼𝜔  (𝑥 107) 𝑚6
  FOR THE VARIATION OF THE INCLINATION OF 

WALLS (2) E (3) WITH 𝜃3 AND 322,5𝑜 

𝜃2 curve 1 curve 2 curve 3 

𝟏𝟓𝟎 1.482 0.907 118.798 

𝟑𝟎𝟎 1.542 0.931 123.598 

𝟒𝟓𝟎 1.401 0.827 112.565 

𝟔𝟎𝟎 0.934 0.539   75.494 

𝟕𝟓𝟎 0.296 0.174   23.988 

𝟖𝟓𝟎 0.036 0.034     2.786 

 

Finally, Table III shows the variation of 𝐼𝜔 with the 

orthogonal fixation of wall (3) to wall (1), performing the 

variation of the wall panel inclination (2). 
 

TABLE III 

VALUES OF  𝐼𝜔  (𝑥 107) 𝑚6
  FOR THE VARIATION OF THE INCLINATION OF 

WALLS (2) E (3) WITH 𝜃3 AND 360𝑜 

𝜃2 curve 1 curve 2 curve 3 

𝟏𝟓𝟎 1,093 0,720 88,025 

𝟑𝟎𝟎 1,309 0,827 104,988 

𝟒𝟓𝟎 1,304 0,787 104,769 

𝟔𝟎𝟎 0,913 0,532 73,671 

𝟕𝟓𝟎 0,306 0,181 24,667 

𝟖𝟓𝟎 0,037 0,040 2,771 

 

Such analysis is aimed at allowing bridge designers to know 

which is the best angle to use in the inclination of these walls, 

contributing in this article item to straight bridges and to 

generate smaller bimoments (since 𝐼𝜔  is related to the 

bimoment by the thin wall section theory presented by 

Vlassov), adding economy to the project with the mere 

inclination of two of the walls that make up the structural core. 

Whereas, Figure 11 (a) presents the graph of the sectoral inertia 

variation  𝐼𝜔  with the modification of the wall inclination (2) 

and maintenance of the inclination of wall (3), and in relation 

15𝑜 to wall (1). As wall (2) tends to approximate orthogonality 

(𝜃2 = 0𝑜) with wall (1), sectoral inertia is increased. Hence, it 

is concluded that the structural core effect provides greater 

flexural torsion resistance, and it is also found that the greater 

the projection onto the floor plan of the thin-walled section, the 

greater the flexural torsion resistance. 

Figure 11 (a) shows that the optimal of wall (2) occurs at 150 

in relation to orthogonality with wall (1), when maintaining the 

minimum inclination of 150 between wall panels (1) and (3). 

Figures 10 (b) and 10 (c) analyze the variation of 𝐼𝜔 for the 

placement of wall (3) at 322.50 (half of the variation inclination 

range) and at 3600 (orthogonal walls between each other). Even 

when imposing relative thicknesses with the ratios 𝜂
3
 and 𝜂

4
, 

the same occurrence is evidenced in Figure 16. Therefore, it can 

be concluded that the inclination of 300 in wall (2) is interesting 

when imposing the placement of wall (3) in the middle of the 

inclination range (in the case at 322.50). 
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Fig. 11.  variation chart from Iω to θ3: (a) 2850, (b) 322.50 and (c) 3600. 

 

In both analysis scenarios the following relations were 

adopted for the walls: 𝑏1 = 𝑏2 = 𝑏3, 𝑏4 = 𝑏5, 𝑡 = 𝑏1. 𝜂3 and 

𝑏4 = 𝜂
4
. 𝑡.  

B. Contribution of Wall Panel inclination in structural 

core double T 

Similar to the procedure in item III (A), we now proceed to 

analyze the variation of the sectoral inertia 𝐼𝜔  for the double T 

column. Thus, Figure 12 (a) shows the geometry of the 

symmetrical section in double T, with the indications of the 

inclinations of the wall panels, whereas, in Table IV, the 

sectoral inertia values 𝐼𝜔  are presented to the detriment of the 

variation of the inclinations on the side walls (2) and (6). 

  
 

TABLE IV 

VALUES OF  𝐼𝜔  (𝑥 108) 𝑚6
 FOR THE VARIATION OF THE INCLINATION OF 

WALLS (2), (3), (6) E (7) 

 

𝜽𝟐 𝜽𝟔 
𝜽𝟑 = 𝟐𝟖𝟓𝟎;   𝜽𝟕 = 𝟏𝟗𝟓𝟎 𝜽𝟑 = 𝟑𝟐𝟐. 𝟓𝟎;   𝜽𝟕 = 𝟐𝟏𝟕. 𝟓𝟎 

curve 1 curve 2 curve 3 curve 1 curve 2 curve 3 

𝟏𝟓𝟎 1650 1.221 0.502 104.968 1.967 0.821 168.500 

𝟑𝟎𝟎 1500 1.017 0.424 87.208 1.645 0.696 140.643 

𝟒𝟓𝟎 1350 0.697 0.295 59.561 1.136 0.486 96.917 

𝟔𝟎𝟎 1200 0.359 0.156 30.615 0.580 0.251 49.378 

𝟕𝟓𝟎 1050 0.102 0.046 8.662 0.151 0.068 12.849 

𝜽𝟐 𝜽𝟔 
𝜽𝟑 = 𝟑𝟔𝟎𝟎;   𝜽𝟕 = 𝟏𝟖𝟎𝟎 

curve 1 curve 2 curve 3 

𝟏𝟓𝟎 1650 1.744 0.753 148.573 

𝟑𝟎𝟎 1500 1.443 0.636 122.467 

𝟒𝟓𝟎 1350 0.977 0.440 82.704 

𝟔𝟎𝟎 1200 0.493 0.228 41.629 

𝟕𝟓𝟎 1050 0.133 0.065 11.197 

 
 

Fig. 12.  Double T column: (a) analyzed geometry; variation chart of Iω to (b) 

θ3 = 285o and  θ7 = 195o; (c) θ3 = 322.5o and  θ7 = 217.5o; and (d) θ3 =
360o and  θ7 = 180o. 

 

As for Figures 12 (b), (c) and (d), the graphs of variation 𝐼𝜔  

are plotted to the detriment of the inclinations of the wall panels 

(2), (6), (3) and (7). A total of three mirrored inclination values 

for panels (3) and (7), being: 𝜃3 = {285𝑜; 322.5𝑜;  360𝑜} and  

𝜃7 = {195𝑜; 217.5𝑜;  180𝑜} are also adopted. It is noteworthy 

that curves 1, 2 and 3 are assembled in a manner similar to item 

III (A). Thus, the following relationships are expressed for the 

dimensions of the walls: 𝑏1 = 𝑏2 = 𝑏3 = 𝑏6 = 𝑏7, 𝑏4 = 𝑏5 =

𝑏8 = 𝑏9, 𝑡 = 𝑏1. 𝜂3 and 𝑏4 = 𝜂
4

. 𝑡. 

IV. NUMERICAL APPLICATIONS  

In order to validate the generalized formulas (see items II A 

and II B), the modeling of metal double T reinforced concrete 

columns is carried out, via CMT and FEM by the ANSYS 

Release 11 Software. Thus, an inclination sub-case of the wall 

panels is used, already characterized in the literature. Finally, 

the vibration modes are used as a parameter for verifying the 

good operationalization of item II of this article. 

A. Modeling of the metal double T column 

The column with cross section is modeled by the ANSYS 

Release 11 software for the occurrence of double T with double 

symmetry, employing 100 meters in height and wall panels with 

the following dimensions: 𝑏1 = 3.45 𝑚, 𝑏2 = 𝑏6 = 𝑏3 =

𝑏7 = 1.725 𝑚 𝑏4 = 𝑏5 = 𝑏8 = 𝑏9 = 1.00 𝑚,  thickness t = 

0.15 m and walls orthogonal to each other. Figure 13 shows the 

geometry of such a metal column with the following properties: 

𝐸 = 2.1 𝑥 108 𝑘𝑁/𝑚², 𝛾
𝑠𝑡𝑒𝑒𝑙

= 7.8 𝑥 103 𝑘𝑁/𝑚3 and 𝜈 =

0.3,  whereas, Figures 14 and 15 show the first modes of 

vibration. The quality of the FEM mesh used in ANSYS was 

99.66%, with 470,738 nodes and 66,700 FE for the double T 

column without lintels. A total of 69,500 FE and 493,853 nodes 

were also used to model the braced column. The modeled 

column has lintels with a thickness 𝑒𝐿 of 15 cm, and height ℎ𝐿 =
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1.00 meter. The spacing of these lintels is 5.00 meters (from 

axis to axis).  

 

 
 

Fig. 13.  Structural core metal column: (a) thin-walled section; and (b) 

vibration frequencies via software ANSYS 2019 Release 11, for the metal 

column without lintels. 

 

 
 

Fig. 14.  Modes of vibration of the metal double T column without lintels via 

modeling by ANSYS: 1st mode in (a) x, (b) y; 2nd mode in (c) x, (d) y and (e) 

3rd mode in y. 

 

 
 

Fig. 15.  Modes of vibration of the metal T column in double T bracing by 

lintels via modeling by ANSYS: 1st mode in (a) x, (b) y, 2nd mode in (c) x, 

(d) y, 3rd mode in (e ) x and (f) y. 

 

Table V shows the comparison of the first three modes of 

vibration as for flexure, and table V compares the terms of 

manual calculation and computer simulation via the ANSYS 

(see Figures 14 and 15). It is noteworthy that the manual 

calculation is performed for metal column without lintels. 

Therefore, 𝑠𝑗 = 0, whose analysis concludes an approximation 

of 4.4 % for the first mode to flexure vibration. Such 

approximation is due to the fact that the solution employed via 

CMT, see Melo & Barbosa (2020 a), is approximated by a finite 

number of terms of the power series that express the 

trigonometric and hyperbolic functions. Such approximations 

evidenced in Table V are due to the solution with 11 power 

series terms to solve the transcendental equation, using FEM 

mesh for modeling in the ANSYS, student version software. By 

increasing the number of terms in the series, there is the 

Mathcad's, outdated student version, workability, and the 

correct data processing does not occur. Even so, there is (with 

Table 5) an order of magnitude verification tool for simulations 

in commercial software. Usando: Δ(%) =
(𝑓𝐶𝑀𝑇−𝑓𝐴𝑁𝑆𝑌𝑆)

𝑓𝐶𝑀𝑇
𝑥100. 

 

TABLE V 

COMPARISON OF THE FIRST THREE MODES OF VIBRATION TO FLEXURE, VIA 

COMPUTER MODELLING 

 

Bracing f Manual calculation – via Table VI Simulation via 

ANSYS  

Δ (%) 

without lintels 

𝒔𝒋 = 𝟎. 𝟎 

1st 1
1.3⁄ . (0.55959) ≡ 0.43045 𝐻𝑧 0.40729 𝐻𝑧 5.38 

2nd 2
3⁄ . (3.50690) ≡ 2.33793 𝐻𝑧 2.43940 𝐻𝑧 4.34 

3rd 2
3⁄ . (9.81960) ≡ 6.54640 𝐻𝑧 6.30480 𝐻𝑧 3.69 

Horizontal lintels 

equally spaced 

by 𝒉 = 𝟓. 𝟎𝟎 𝒎  

(𝒔𝒋 =  𝟖. 𝟎𝟕) 

1st 0.40526 𝐻𝑧 0.40918 𝐻𝑧 0.97 

2nd 2
3⁄ . (3.94602) ≡ 2.63068 𝐻𝑧 2.47520 𝐻𝑧 5.91 

3rd 2
3⁄ . (10.47998) ≡ 6.98665 𝐻𝑧 6.55640 𝐻𝑧 4.35 

Average difference in percentage 4.11 

 

Such weighting of the results obtained via CMT is postulated 

in Dziewolski (1964), where coefficient 𝛼 = 1 ⁄ 1.5 (≡ 2 ⁄ 3) 

of adjustment for the vibration frequencies is proposed, in 

simple structures, through the CMT, applicable in this article 

for the 2nd and 3rd vibration modes. As for the complex 

structures, like the first vibration mode for activating more 

deformation energy, coefficient 𝛼 = 1
1.3⁄  is used as an 

adjustment. Still, Table VI presents the parameters used for the 

attainment of the frequencies via CMT, evidencing the 

theoretical basis for their generation in Melo & Barbosa (2020 

a, b). It is noteworthy that, for 𝜆 = 𝐻. √𝑠1 ≡

 100 𝑚. √0.006521 ≡ 8.07 to use the tabulated value 

immediately closest, in this case, 𝜆 =  10.0 is the choice. 
 

TABLE VI 

COMPARISON OF THE FIRST THREE MODES OF VIBRATION TO FLEXURE, VIA 

COMPUTER MODELLING 

 

𝝀 = 𝑯. √𝒔𝒋 
Mode  

𝒊 = 𝟏 

Mode  

𝒊 = 𝟐 

Mode  

𝒊 = 𝟑 

Mode  

𝒊 = 𝟒 

Mode  

𝒊 = 𝟓 

Mode  

𝒊 = 𝟔 

Mode  

𝒊 = 𝟕 

0.0 

𝜆1 [𝐴𝐷𝑀] 1.87510 4.69409 7.85483 9.08911 10.02092 11.68901 14.62618 

𝜆2 [𝐴𝐷𝑀] 1.87510 4.69409 7.85483 9.08911 10.02092 11.68901 14.62618 

𝜔𝑖
∗ [𝑟𝑎𝑑/𝑠] 3.51600 22.03448 61.69835 84.61192 105.97714 136.63295 213.92514 

𝑇𝑖
∗[𝑠] 1.78703 0.28515 0.10184 0.07606 0.05929 0.04599 0.02937 

𝒇𝒊
∗ [𝑯𝒛] 0.55959 3.50690 9.81960 13.46640 16.86790 21.74580 34.04724 

7.5 

𝜆1 [𝐴𝐷𝑀] 2.89825 5.30895 8.29810 9.50762 10.32883 11.82274 14.57512 

𝜆2 [𝐴𝐷𝑀] 0.94861 4.54807 7.83316 9.10466 9.95915 11.50118 14.31552 

𝜔𝑖
∗ [𝑟𝑎𝑑/𝑠] 2.74930 24.14548 65.00038 86.56365 102.86640 135.97548 208.65043 

𝑇𝑖
∗[𝑠] 0.43756 3.84290 10.34554 13.77790 16.37197 21.64033 33.21156 

𝒇𝒊
∗ [𝑯𝒛] 2.89825 5.30895 8.29810 9.50762 10.32883 11.82274 14.57512 
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10.0 

𝜆1 [𝐴𝐷𝑀] 3.25746 5.50391 8.42839 9.64266 10.43138 11.87014 14.61565 

𝜆2 [𝐴𝐷𝑀] 0.78169 4.50478 7.81267 9.10938 9.94051 11.44116 14.26945 

𝜔𝑖
∗ [𝑟𝑎𝑑/𝑠] 2.54634 24.79389 65.84820 87.83870 103.69321 135.80821 208.55730 

𝑇𝑖
∗[𝑠] 2.46754 0.25342 0.09542 0.07153 0.06059 0.04627 0.03013 

𝒇𝒊
∗ [𝑯𝒛] 0.40526 3.94602 10.47998 13.98015 16.50437 21.61228 33.18951 

 

Figure 16 presents the change of the elastic line into the first 

modes of vibration for 𝑠𝑗 = 0 (in the absence of lintel bracing) 

carrying out the analysis by CMT. 

 

 
 

Fig. 16.  First vibrations of the thin-walled column with fixed base and free 

top. 

B. Modeling of the metal double T column 

The column shown in item IV (A) is modeled using the 

ANSYS Release 11 software, adapting the cross section for the 

occurrence of double T with double symmetry, as well as using 

reinforced concrete with Young Module = 52 𝐺𝑃𝑎 and 

Poisson's coefficient 𝜈 = 0.2. Thus, Figure 13 (a) shows the 

geometry of such a column, where the lintels are imposed with 

a thickness 𝑒𝐿  of 25 cm, height ℎ𝐿 of 1.00 meter and are spaced 

(from axis to axis) by the distance ℎ of 5.00 meters. As for 

Figures 17 and 18, the first modes of vibration of the column 

are presented without bracing and with locking promoted by the 

lintels, respectively. In the column without lintels, 167,498 

nodes and 23,600 FE were used for modeling by ANSYS, 

obtaining a quality of 99.65% for the FE mesh. As for the 

braced column, 99.67% of the mesh quality was evidenced, 

with the use of 162,313 nodes and 22,560 finite elements.  

 

Fig. 17.  Modes of vibration of the reinforced concrete double T column 

without lintels via modeling by ANSYS: (a) 1st mode of flexion around the x-

axis, (b) 1st mode with flexion deformation around the y-axis, (c) 2nd mode 

of flexion around the x-axis, (d) 2nd mode of flexion around the y-axis (e) 3rd 

mode of flexion around the y-axis. 

Table VII shows the comparison of the first three modes of 

vibration as for flexure in the reinforced concrete column, and 

table VII compares the terms of manual calculation and 

computer simulation via the ANSYS (see Figures 17 and 18). It 

is noteworthy to inform that, for 𝜆 = 𝐻. √𝑠1 ≡

 100 𝑚. √0.006092 ≡ 7.81, the tabulated value (see Table VI) 

immediately closest, in this case 𝜆 =  7.5 is the choice. In 

addition, the following weighting coefficients were used for the 

column braced by lintels: 𝛼 = 2
3⁄  for the first vibration mode, 

and 𝛼 = 1
2⁄  for the 2nd and 3rd vibration modes. As for the 

column without bracing, the same weighting coefficients were 

used as in the example provided in item IV (A). In conclusion, 

modeling via CMT resulted in an average approximation of 

95.81% in relation to the ANSYS software. 

 
TABLE VII 

COMPARISON OF THE FIRST THREE MODES OF VIBRATION TO FLEXURE, VIA 

COMPUTER MODELLING 

Bracing f Manual calculation – via Table VI Simulation via 

ANSYS  

Δ (%) 

without lintels 

𝒔𝒋 = 𝟎. 𝟎 

1st 1
1.3⁄ . (0.55959) ≡ 0.43045 𝐻𝑧 0.40771 𝐻𝑧 5.29 

2nd 2
3⁄ . (3.50690) ≡ 2.33793 𝐻𝑧 2.45010 𝐻𝑧 4.80 

3rd 2
3⁄ . (9.81960) ≡ 6.54640 𝐻𝑧 6.42670 𝐻𝑧 1.83 

Horizontal lintels 

equally spaced 

by 𝒉 = 𝟓. 𝟎𝟎 𝒎  

(𝒔𝒋 =  𝟕. 𝟖𝟏) 

1st 2
3⁄ . (0.43756) ≡ 0.33659 𝐻𝑧 0.33652 𝐻𝑧 0.02 

2nd 1
2⁄ . (3.84290) ≡ 1.92145 𝐻𝑧 2.05130 𝐻𝑧 6.76 

3rd 1
2⁄ . (10.34554) ≡ 5.17277 𝐻𝑧 5.50520 𝐻𝑧 6.43 

Average difference in percentage 4.19 
 

 
Fig. 18.  Modes of vibration of the reinforced concrete double T column 

braced by lintels via modeling by ANSYS: (a) 1st mode with flexion 

deformation around the y-axis, (b) 1st mode with flexion deformation around 

the x-axis, (c) 2nd flexion mode around the y-axis, (d) 2nd flexion mode 
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around the x axis and (e) 3rd flexion mode on the x-axis. 

V. CONCLUSION 

In this paper, the Generalization of Wall Panels Theory 

(GWPT) is carried out following the nomenclature presented in 

Vlassov (1962) and the equation of the walls by generic 

trigonometric formulation. The aforementioned formulation is 

operationalized through the incidence of the referred wall 

panels, presenting the geometric properties of the column in 

structural core format, regarding the flexure-pill phenomenon. 

Still, in the wall panel theory, the contribution of the modeling 

of bracing lintels via Maney equations (equilibrium equations 

for hyperstatic structures from the perspective of the 

displacement method) is carried out. The practical motivation 

for such an analysis, GWPT, is to provide a design tool for 

bridges with structural model in beams, and that the structural 

engineer can add economy to the project by merely inclining 

the walls that form the structural core-shaped s.  

The analysis of the optimized inclination of the wall panels 

of the column in structural core is done for straight bridges and 

more precisely in item III (B). Three scenarios of relative 

positioning of panels (2) and (3) are analyzed, in which the 

inclination of wall (3) is kept fixed at the following angles: 

285𝑜; 322.5𝑜 and 360𝑜, respectively per scenario. As for the 

double T core, the inclinations of the walls (2) - (6) and (3) - (7) 

are optimized, considering as variation: 𝜃2 from 150 to 750 

with the increment of 15 degrees, 𝜃3 = 2850; 322.50; 3600, 𝜃6 

and 𝜃7  symmetrical to angles 𝜃2 and 𝜃3, as shown in Figure 13 

(a). In the analysis of the inclination of the wall panels, the 

objective is the variation of the sectoral inertia 𝐼𝜔 and 

consequent bimoment, providing tools for the structural 

engineer to add economy to the project with the mere 

inclination of the lateral walls of the column in structural core. 

Thus, promoting the reduction of the internal forces, of which 

it is relevant to mention the bimomento. 

Moreover, it is proposed to extend the analysis of the panels, 

which postulation is found in Melo & Barbosa (2020 a) for 

massive or thin-walled closed cross-sections. The equation of 

the dynamic analysis in the open section columns is carried out 

in this article with the appropriate formulation generalized by 

the generic inclination of the wall panels. With the thin-walled 

sections open, the flexural torsion phenomenon is activated and, 

therefore, the structure stiffness is partitioned into two matrices, 

namely [J] the structural core stiffness matrix itself and [S] for 

lintels that promote bracing. For such dynamic treatment of the 

open section, the decoupling flowchart of this differential 

equation system is postulated. The vibration modes for metal 

columns are also analyzed, comparing manual processing via 

continuous media technique with FEM modeling through 

ANSYS Release 11 through the appropriate modal analysis 

tool. Finally, the validation of the generalized formulations is 

presented (see items II A and II B), in addition to the dynamic 

modeling via CMT and by ANSYS Release 11 for metal double 

T reinforced concrete columns, verifying 4.11 % and 4.19 %, 

respectively, in the first three modes of vibration. 

APPENDIX 

with: Δ1𝑃 = (2. 𝜔𝑝𝑐𝑓1
− 𝜔𝑝𝑐𝑃

) ; Δ𝑃1 = (2. 𝜔𝑝𝑐𝑃
− 𝜔𝑝𝑐𝑓1

) ; Δ12 = (2. 𝜔𝑝𝑐𝑓1
−

𝜔𝑝𝑐𝑓2
) ;  Δ86 = (2. 𝜔𝑝𝑐𝑓8

+ 𝜔𝑝𝑐𝑓6
) ;   

Δ21 = (2. 𝜔𝑝𝑐𝑓2
− 𝜔𝑝𝑐𝑓1

) ; Δ𝑃3 = (2. 𝜔𝑝𝑐𝑃
− 𝜔𝑝𝑐𝑓3

) ; Δ3𝑃

= (2. 𝜔𝑝𝑐𝑓3
− 𝜔𝑝𝑐𝑃

) ;  Δ79 = (2. 𝜔𝑝𝑐𝑓7
+ 𝜔𝑝𝑐𝑓9

) ; Δ𝑃7

= (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓7

) ;  

  Δ24 = (2. 𝜔𝑝𝑐𝑓2
+ 𝜔𝑝𝑐𝑓4

) ; Δ42 = (2. 𝜔𝑝𝑐𝑓4
+ 𝜔𝑝𝑐𝑓2

) ; Δ35 = (2. 𝜔𝑝𝑐𝑓3
+

𝜔𝑝𝑐𝑓5
) ;  Δ97 = (2. 𝜔𝑝𝑐𝑓9

+ 𝜔𝑝𝑐𝑓7
) ; Δ7𝑃 = (2. 𝜔𝑝𝑐𝑓7

+ 𝜔𝑝𝑐𝑃
) ; 

  Δ53 = (2. 𝜔𝑝𝑐𝑓5
+ 𝜔𝑝𝑐𝑓3

) ; Δ16 = (2. 𝜔𝑝𝑐𝑓1
+ 𝜔𝑝𝑐𝑓6

) ; Δ61 = (2. 𝜔𝑝𝑐𝑓6
+

𝜔𝑝𝑐𝑓1
) ; Δ68 = (2. 𝜔𝑝𝑐𝑓6

+ 𝜔𝑝𝑐𝑓8
), 

where: Δ𝜔𝑝𝑐𝑓1
= −𝑏1. (𝑑𝑦. cos 𝜃1 + 𝑑𝑧. sin 𝜃1);  Δ𝜔𝑝𝑐𝑓3

= −𝑏3. (𝑑𝑦. cos 𝜃3 + 𝑑𝑧. sin 𝜃3); 

            Δ𝜔𝑝𝑐𝑓2
= −𝑏2. (𝑑𝑦. cos 𝜃2 + 𝑑𝑧. sin 𝜃2) + 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2) ;    

Δ𝜔𝑝𝑐𝑓5
= −𝑏5. (𝑑𝑦. cos 𝜃5 + 𝑑𝑧. sin 𝜃5) + 𝑏3. 𝑏5. sin(𝜃3 − 𝜃5) ; 

            Δ𝜔𝑝𝑐𝑓4
= −𝑏4. (𝑑𝑦. cos 𝜃4 + 𝑑𝑧. sin 𝜃4) + 𝑏1. 𝑏4. sin(𝜃1 − 𝜃4) +

𝑏2. 𝑏4. sin(𝜃2 − 𝜃4) ;    Δ𝜔𝑝𝑐𝑓7
= −𝑏7. (𝑑𝑦. cos 𝜃7 + 𝑑𝑧. sin 𝜃7); 

            Δ𝜔𝑝𝑐𝑓6
= −𝑏6. (𝑑𝑦. cos 𝜃6 + 𝑑𝑧. sin 𝜃6) + 𝑏1. 𝑏6. sin(𝜃1 − 𝜃6) ;   

Δ𝜔𝑝𝑐𝑓9
= −𝑏9. (𝑑𝑦. cos 𝜃9 + 𝑑𝑧. sin 𝜃9) + 𝑏7. 𝑏9. sin(𝜃7 − 𝜃9) ;  

            Δ𝜔𝑝𝑐𝑓8
= −𝑏8. (𝑑𝑦. cos 𝜃8 + 𝑑𝑧. sin 𝜃8) + 𝑏1. 𝑏8. sin(𝜃1 − 𝜃8) +

𝑏6. 𝑏8. sin(𝜃6 − 𝜃8), 

with: 𝜔𝑝𝑐𝑃
= 𝑑𝑦. 𝑑𝑧;  𝜔𝑝𝑐𝑓1

= 𝜔𝑝𝑐𝑃
+ Δ𝜔𝑝𝑐𝑓1

; 𝜔𝑝𝑐𝑓2
= 𝜔𝑝𝑐𝑓1

+ Δ𝜔𝑝𝑐𝑓2
; 

           𝜔𝑝𝑐𝑓3
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓3
;  𝜔𝑝𝑐𝑓7

= 𝜔𝑝𝑐𝑃
+ Δ𝜔𝑝𝑐𝑓7

;  

           𝜔𝑝𝑐𝑓4
= 𝜔𝑝𝑐𝑓2

+ Δ𝜔𝑝𝑐𝑓4
; 𝜔𝑝𝑐𝑓5

= 𝜔𝑝𝑐𝑓3
+ Δ𝜔𝑝𝑐𝑓5

;  𝜔𝑝𝑐𝑓6

= 𝜔𝑝𝑐𝑓1
+ Δ𝜔𝑝𝑐𝑓6

; 𝜔𝑝𝑐𝑓8
= 𝜔𝑝𝑐𝑓6

+ Δ𝜔𝑝𝑐𝑓8
; 𝜔𝑝𝑐𝑓9

= 𝜔𝑝𝑐𝑓7
+ Δ𝜔𝑝𝑐𝑓9

. 

𝑑𝑧 =
−𝑡

𝐼𝑧

. ∫ 𝜔𝑝. 𝑦

𝓈

 𝑑𝓈 

      ≡
−𝑡

𝐼𝑧

. {
𝑏2

6
. Δ𝜔2. (𝑦1 + 2. 𝑦2) +

𝑏4

6
. Δ𝜔2. (2. 𝑦2 + 𝑦4)

+
𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑦2 + 2. 𝑦4)

+
𝑏5

6
. Δ𝜔5. (𝑦3 + 2. 𝑦5) +

𝑏6

6
. Δ𝜔6. (𝑦1 + 2. 𝑦6)

+
𝑏8

6
. Δ𝜔6. (2. 𝑦6 + 𝑦8)

+
𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑦6 + 2. 𝑦8)

+
𝑏9

6
. Δ𝜔9. (𝑦7 + 2. 𝑦9)} 

𝑑𝑦 =
𝑡

𝐼𝑦

. ∫ 𝜔𝑝. 𝑧

𝓈

 𝑑𝓈 = 
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         ≡
𝑡

𝐼𝑧

. {
𝑑2

6
. Δ𝜔2𝑎. 𝑧1 +

(𝑏2 − 𝑑2)

6
. 𝑧2. (Δ𝜔2𝑎 + 2. Δ𝜔2)

+
𝑏4

6
. Δ𝜔2. (2. 𝑧2 + 𝑧4)

+
𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑧2 + 2. 𝑧4)

+
𝑏5

6
. Δ𝜔5. (𝑧3 + 2. 𝑧5) +

𝑏6

6
. Δ𝜔6. (𝑧1 + 2. 𝑧6)

+
𝑏8

6
. Δ𝜔6. (2. 𝑧6 + 𝑧8)

+
𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑧6 + 2. 𝑧8)

+
𝑏9

6
. Δ𝜔9. (𝑧7 + 2. 𝑧9)}                    𝑖𝑓 𝑏𝐶𝐺𝑧

≥ 0  

        ≡
𝑡

𝐼𝑧

. {
𝑏2

6
. Δ𝜔2. (𝑧1 + 2. 𝑧2) +

𝑏4

6
. Δ𝜔2. (2. 𝑧2 + 𝑧4)

+
𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑧2 + 2. 𝑧4)

+
𝑏5

6
. Δ𝜔5. (𝑧3 + 2. 𝑧5) +

𝑑6

6
. 𝑧6. (Δ𝜔6𝑎 + 2. Δ𝜔6)

+
(𝑏6 − 𝑑6)

6
. Δ𝜔6𝑎. 𝑧1 +

𝑏8

6
. Δ𝜔6. (2. 𝑧6 + 𝑧8)

+
𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑧6 + 2. 𝑧8)

+
𝑏9

6
. Δ𝜔9. (𝑧7 + 2. 𝑧9)}                      𝑖𝑓 𝑏𝐶𝐺𝑧

< 0  

with: 𝑑2 =
|𝑧1|. 𝑏2

|𝑧1| + |𝑧2|
;   𝑑6 =

|𝑧6|. 𝑏6

|𝑧1| + |𝑧6|
;    Δ𝜔2𝑎 =

𝑑2

𝑏2

. Δ𝜔2     and     Δ𝜔6𝑎

= (1 −
𝑑6

𝑏6

) . Δ𝜔6; 

          Δ𝜔1 = Δ𝜔3 = Δ𝜔7 = 0;  Δ𝜔2 = 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2) ;  

          Δ𝜔5 = 𝑏3. 𝑏5. sin(𝜃3 − 𝜃5) ;  Δ𝜔6 = 𝑏1. 𝑏6. sin(𝜃1 − 𝜃6) ; 

          Δ𝜔4 = −𝑏1. 𝑏4. sin(𝜃4 − 𝜃1) − 𝑏2. 𝑏4. sin(𝜃4 − 𝜃2) ;  

          Δ𝜔8 = 𝑏1. 𝑏8. sin(𝜃1 − 𝜃8) + 𝑏6. 𝑏8. sin(𝜃6 − 𝜃8) ;  

          Δ𝜔9 = 𝑏7. 𝑏9. sin(𝜃7 − 𝜃9) ; 𝑧𝑝 = −𝑏𝐶𝐺𝑧
;  and  𝑦𝑝 = 𝑏𝐶𝐺𝑦

. 
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