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Abstract– In this paper, a modified type of Burgers 

equation is investigated by the Lie symmetry analysis 

approach. All the geometric vector fields and the Lie 

groups admitted by the equation are constructed. 

Finally the symmetry reduction and the symmetry 

solutions of the equation are obtained. 
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I. INTRODUCTION 

he investigation of exact solutions of nonlinear PDEs 

plays an important role in the study of nonlinear 

physical phenomena for instance in shallow water waves, 

fluid physics, general relativity and may others. Lie 

symmetry analysis, pioneered by Sophus Lie, has played a 

significant role in the construction of exact solutions to 

nonlinear partial differential equations. The Burgers 

equation is a fundamental nonlinear PDE occurring in 

solitary wave theory and various areas of applied 

mathematics such as fluid mechanics, nonlinear acoustics, 

gas dynamics and traffic flow. 

In [4], Hongwei et al. discussed the Lie symmetry and 

the discrete symmetries of the Inviscid Burgers equation. 

By employing the Lie group method of infinitesimal 

transformation, they gave the symmetry reductions and the 

similarity solutions of the equation. Based on the discrete 

analysis, they obtained two groups of discrete symmetry 

which lead to exact solutions of the Inviscid Burgers 

equation. Gangwei and Tianzhou [1] performed the Lie 

group analysis for the nonlinear perturbed Burgers 

equation and the time fractional nonlinear perturbed 

Burgers equation. They constructed all the point 

symmetries and the vector fields, subsequently investigated 

the symmetry reductions and finally obtained some exact 

explicit solutions of the equations. Burgers equation was 

also investigated by Okoya [6]. He determined all the Lie 

groups admitted by the equation and then used the 

symmetry transformation to establish all the global 

solutions corresponding to each Lie group admitted by the 

equation. 

In this paper, we will investigate the vector fields, Lie 

groups, similarity reductions and the symmetry solutions to 

the modified type of Burgers equation: 

        
23 0t x xxu u u u− + =    (1) 

using Lie symmetry analysis approach. 

Here ( , )u u x t=  represents the unknown function, x  is 

the spatial coordinate in the propagation direction and t  is 

the temporal coordinates, which occur in different context 

in mathematical physics [9], [10]. 
 

II. LIE SYMMETRY AND THE GEOMETRIC 

VECTOR FIELDS 

 

A) Geometric vector field of Eq. (1) 

Let 
23 0t x xxu u u u = − + =  and the infinitesimal 

generator V of Eq. (1) to be of the form 

 

( , , ) ( , , ) ( , , )V x t u x t u x t u
x t u

  
  

= + +
  

 (2) 

where the coefficients ( , , )x t u , ( , , )x t u  and ( , , )x t u  

are to be determined. 

For the symmetry condition to be satisfied by Eq. (1), then: 

 
(2)

0 0V = =     (3) 

where 
(2)V  is the second prolongation of Eq.(2) given by: 

(2) x t

x t

xx xt tt

xx xt tt

V
x t u u u

u u u

    

  

    
= + + + +

    

  
+ + +

  

 (4) 

Substituting Eq. (4) into Eq. (3), the infinitesimal condition 

reduces to 
26 3 0t x xx

xuu u n  − − + =    (5) 

 

 

 
 

T 
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which must be satisfied whenever 0 = . 

Substituting for 
t , 

x  and 
xx , we have  

 

2

2 2

2

3 2

( ) 6

3 ( )

(2 ) ( 2 )

2 ( 2 )

2 3 2 0

t x x u t t u x t u t x

x u x x x t u x u x t

xx xu xx x xx t uu xu x

xu x t uu x uu x t u x xx

x xt u x xx u t xx u x xt

u u u u u uu

u n u u u u u

u u n u

u u u u u u

u u u u u u u

      

    

    

    

   

− + − − − −

− + − − − −

+ + − − + −

− − − + −

− − − − =

 

 

On replacing 
xxu  by 

23 x tu u u−  wherever it occurs and 

equating the coefficients of various monomials in the first 

and second derivatives of u , we obtain the following 

determining equations. 

0u x = =      (6) 

2 2 2 0u u xuu  + − =     (7) 

22 2 0t x xx xu   − + − + =    (8) 

23 2 0u uu xuu   − + − =    (9) 

26 2 3 0t xu xx xu u    − − + − − =   (10) 

23 0t x xxu  − + =     (11) 

 

We begin by solving eq. (6) to obtain 

            ( )A t =  

where A is an arbitrary function. 

From Eq. (7), we see that   is a function of x  and t and 

thus the general solution of Eq.(8) is  

 
1

( )
2

tA x B t = +  

and Eq.(9) yields 

 ( , ) ( , )C x t u D x t = +  

for some functions B, C and D. Substituting these results in 

(10) and (11), we obtain 

21 3
2 6 6 0

2 2
tt t x tA x B C Du C A u

 
− − − − − + = 

 
 (12) 

2 3( ) ( ) 3 3 0t xx t xx x xD D C C u D u C u+ + + − − =  (13) 

The functions A, B, C and D are independent of u . 

Therefore eq. (12) and (13) can be decomposed by 

equating the powers of u  as follows: 

0D =       (14) 

0xC =       (15) 

0t xxC C+ =      (16) 

3
6 0

2
tC A+ =      (17) 

 

 

1
2 0

2
tt t xA x B C+ − =     (18) 

0xD =       (19) 

0t xxD D+ =      (20) 

Using Eq. (14), (15), (16), (17) and (18) in turn we obtain  

1 1 2 30, , 4 ,D C k A k t k B k= = = − + =   (21) 

where 1 2,k k  and 
3k  are arbitrary constants. 

Therefore the infinitesimals are given by  

1 32k x k = − + , 1 24k t k = − + , 1k u = . (22) 

Substituting Eq. (22) into Eq. (2), we have 

1 3 1 2 1( 2 ) ( 4 )V k x k k t k k u
x t u

  
= − + + − + +

  
 (23) 

From Eq. (23), we obtain the following vector fields: 

1 2 4V x t u
x t u

  
= + −

  
 

2V
t


=


 

3V
x


=


 

 

B) Lie groups admitted by Eq. (1) 

 

The one parameter groups iG admitted by Eq. (1) are 

determined by solving the corresponding Lie equations 

below: 
* * *

* * *

1 : 2 , 4 ,
dx dt du

V x t u
d d d  

= = = −  

    

* * *

2 : 0, 1, 0
dx dt du

V
d d d  

= = =  

    

* * *

3 : 1, 0, 0
dx dt du

V
d d d  

= = =  

with the initial conditions that: 
*

0 0x = = , 
*

0t t = =  and 

*

0 0u = = . This yields: 

( )* * * 2 4

1 : ( , , ; ) , ,G x t u xe te ue   −→  

* * *

2 : ( , , ; ) ( , , )G x t u x t u → +  

* * *

3 : ( , , ; ) ( , , )G x t u x t u → +   (24) 

 

C) The symmetry reduction of Eq. (1) 

Here we make use of the vector fields 1V , 2V , 3V  and 

2 3V V+  to reduce Eq. (1) to systems of ordinary 

differential equations (ODEs). 
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The symmetry reductions of Eq. (1) can be obtained by 

solving the characteristic equation given by: 

( , , ) ( , , ) ( , , )

dx dt du

x t u x t u x t u  
= =  

 

(a) For the vector field 1V , we have 

2 4

dx dt du

x t u
= =

−
 

With the invariant function z  taking the form 
1

2z xt
−

=  and u  expressed as 
1

4 ( )u t w z
−

=     (25) 

Differentiating Eq. (25) and substituting in Eq. (1), 

we obtain the second order ODE given by 

21 1
3 0

4 2
w zw w w w  − − − + =  (26)    

           Where  
dw

w
dz

 = . 

(a) For the vector field 2V , we have 

0 1 0

dx dt du
= =  

The invariant function z takes the form z x=  

while u  is given by  

( )u w z=     (27) 

Differentiating Eq. (27) and substituting in Eq. (1), 

we obtain 
23 0w w w − + =    (28) 

where 
dw

w
dz

 =  

(b) For the vector field 3V , we have 

1 0 0

dx dt du
= =  

The invariant function z t=  satisfies  

( )u w z=     (29) 

Differentiating Eq. (29) and substituting in Eq. (1), 

we obtain 

0w =      (30) 

where 
dw

w
dz

 = . 

(c) For the linear combination 2 3V V+ , where 

0  is the wave velocity, we have 

              
1 0

dx dt du


= =  

 

 

The invariant function z takes the form z x t= −  while 

u  is given by  

( )u w z=      (31) 

Differentiating Eq. (31) and substituting in Eq. (1), we 

arrive at: 
23 0w w w w   − − + =    (32) 

where 
dw

w
dz

 = . 

 
III. THE INVARIANT SOLUTIONS TO EQ. (1) 

 

Here we consider the solutions of the reduced ordinary 

differential equations and then determine the invariant 

solutions to the original partial differential equation (1). 

 

A) Exact power series solution of Eq. (26) 

We seek a solution in power series of the form 

( ) n

n

n o

w z c z


=

=    (33) 

Differentiating Eq. (33) and substituting in Eq. 

(26), we have  

1

1

0 0

1

0 0 0

2

0

1 1
( 1)

4 2

3 ( 1)

( 1)( 2) 0

n n

n n

n n

n n n

n n n

n n n

n

n

n

c z n c z

c z c z n c z

n n c z

 
+

+

= =

  

+

= = =



+

=

− − +

   
− +   

   

+ + + =

 

  



 

On relabeling, we obtain 

1 1

2

0 1 1

1 0 0

2 2

1

1 1 1

4 4 2

3 3 ( 1 )

2 ( 1)( 2) 0

n n

o n n

n n

n k
n

i k i n k

n k i

n

n

n

c c z nc z

c c n k c c c z

c n n c z

 

= =



− + −

= = =



+

=

− − −

− − + −

+ + + + =

 





 

Collecting the terms with similar powers of z 

together, we have 

2

1 2

1

1 2

0 0

1 1 1
3 2

4 4 2

3 ( 1 ) ( 1)( 2) 0

o o n n

n

n k
n

i k i n k n

k i

c c c c c nc

n k c c c n n c z



=

− + − +

= =


− − + + − −




− + − + + + =







 

      (34) 

  From Eq. (34), we have that for 0n = , 

           

2

0 0 1
2

3

8 2

c c c
c = +     (35) 
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For 1n  , we obtain the recurrence relation 

2

1

0 0

1

( 1)( 2) 4 2

3 ( 1 )

n n
n

n k

i k i n k

k i

c nc
c

n n

n k c c c

+

− + −

= =


= +

+ + 


+ + − 




  (36) 

Where ( 1,2,....)ic i =  are arbitrary constants 

For 1,2n = , we obtain 

2 2

3 0 2 0 1 1

1 3
6 6

6 4
c c c c c c

 
= + + 

 
 

2 3

4 0 3 0 1 2 1 2

1 5
9 18 3

12 4
c c c c c c c c

 
= + + + 

 
 

Hence the power series solution of Eq. (26) can be 

expressed as: 

2 2

0 1 2 2

1

2
20 1

0 1

1

2

1

0

( )

3

8 2

1

( 1)( 2) 4 2

3 ( 1 )

n

n

n

o

n n

n

n k
n

i k i n k

k i

w z c c z c z c z

c c c
c c z z

c nc

n n

n k c c c z


+

+

=



=

+

− + −

=

= + + +

 
= + + + 

 


+

+ + + 


+ + − 









 

 

There exact invariant power series solution of Eq. (1) is  
1 3 52

20 14 4 4
0 1

1

5 2

2 4
1

0

3
( , )

8 2

1

( 1)( 2) 4 2

3 ( 1 )

o

n n

n

nn k
n

i k i n k

k i

c c c
u x t c t c xt x t

c nc

n n

n k c c c x t

− − −



=

+
−

+

− + −

=

 
= + + + 

 


+

+ + + 


+ + − 







(37) 

In mathematical and physical applications, the solution to 

Eq. (1) can conveniently be expressed in approximate form 

as  
1 3 52

20 14 4 4
0 1

7

2 2 3 4
0 2 0 1 1

9

2 3 4 4
0 3 0 1 2 1 2

3
( , )

8 2

1 3
6 6

6 4

1 5
9 18 3 .....

12 4

oc c c
u x t c t c xt x t

c c c c c x t

c c c c c c c x t

− − −

−

−

 
= + + + 

 

 
+ + + 

 

 
+ + + + + 

 

(38) 

B) The stationary solution to Eq. (28) 

Integrating Eq.(28) and keeping the integration 

constant zero, we have: 
3 0w w − =     (39) 

Solving Eq.(39) we obtain 

3

2

2

1

2

1

2( )

2( )

dw
dz

w

z c
w

w
z c

i
w

z c

=

− = +

= −
+

=
+

    

Hence the exact analytic solution to Eq.(1) is given 

by : 

( , )
2( ) 2

i i
u x t

x c x c
= =

+ +
 (40) 

 

C) Solution to Eq. (30) 

Integrating Eq.(30), we obtain w c=  where c is a 

constant of integration. 

Thus we obtain a trivial solution to Eq.(1) given by  

( , )u x t c=     (41) 

 

D) Travelling wave solution to Eq. (32) 

Integrating Eq.(32) and keeping the integration 

constant zero, we have 
3 0w w w− − =  

2( )
dw

w w
dz

 = +    (42) 

On rearranging Eq.(42) and by partial fractions, we 

get 

2

1 dw wdw
dz

w w 

 
− = 

+ 
 

On integration, we obtain 

2

2

2 2

1
ln ln( )

2

ln

1

z

z

w w z c

w
z c

w

c e
w

c e





 








− + = +

 
 = + 

+ 

 =
−

 

Where c is the constant of integration. 
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Thus the exact travelling wave solution to Eq.(1) is  

( )

2 2 ( )
( , )

1

x t

x t

c e
u x t

c e

 

 





−

−
=

−
  (43) 

 

IV. THE SYMMETRY SOLUTIONS TO EQ.(1) 

 

According to Olver P.J [7], if ( , )u w x t= is a 

solution of Eq.(1), so are the functions: 
2 4

1

2

3

( ) ( , ) ( , )

( ) ( , ) ( , )

( ) ( , ) ( , )

G w x t w xe te e

G w x t w x t

G w x t w x t

  

 

 

− − −=

= −

= −

 

 

That is, a symmetry group of Eq.(1) is a local group of 

transformation G with the property that whenever 

( )u w x=  is a solution of Eq.(1) and whenever .g w  is 

defined for g G , then .u g w= is also a solution of 

Eq.(1). 

Thus using 1G , the symmetry solutions of Eq.(1) can be 

given by expressing equations (37), (40), (41) and (43) as 

follows: 

 
1 3

* * * * 4 * 2 * 44 4
0 1

52
* 2 2 * 40 1 4

1

5 2

* 2 2 * 4 4
1

0

( , ) ( ) ( )( )

3
( ) ( )

8 2

1

( 1)( 2) 4 2

3 ( 1 ) ( ) ( )

o

n n

n

nn k
n

i k i n k

k i

u x t c t e c x e t e

c c c
x e t e

c nc

n n

n k c c c x e t e e

  

 

  

− −
− − −

−
− −



=

+
−

− + − −

− + −

=


= +


 
+ + 
 


+

+ + + 


+ + − 

 





 

     (44)  

* * *

* 2
( , )

2

i
u x t e

x e c





−

−
=

+
   (45) 

 
* * *( , )u x t ce −=     (46) 

 

 
* 2 * 4

* 2 * 4

( )
* * *

2 2 ( )

( , )
1

x e t e

x e t e

c e
u x t e

c e

 

 

 


 





− −

− −

−
−

−

=
−

  (47) 

2G  and 3G  can be used in a similar manner. 

 

 

V. CONCLUSION 

 In this paper, we have obtained the geometric vector 

fields, Lie groups and the symmetry reduction of the 

modified type of Burgers equation (1) using Lie symmetry 

analysis method. Moreover, all the group invariant 

solutions to the equation have been considered and the 

exact symmetry solutions to the equation determined by 

transforming a known invariant solution by all the possible 

group elements.  
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