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Abstract—Internet of Things refers to the network of 

physical objects embedded with sensors, software, and other 

technologies that enable them to connect and exchange data 

with other devices and systems over the internet. These objects 

can range from simple household items like refrigerators and 

thermostats to complex industrial machinery. IoT allows for 

greater automation, control, and data analysis in various 

domains, including home automation, healthcare, 

transportation, agriculture, and manufacturing, bringing in 

addition to many benefits, challenges related to security issues. 

Intrusion Detection Systems (IDS) have been an important 

tool for the protection of networks and information systems. 

Many machine learning models have been used to enhance its 

performance and accuracy. In this paper, we present a 

survey of IDS research efforts under machine learning models 

for IoT. Our objective is to identify issues in previous models 

and review leading trends. We classified the IDSs proposed in 

the literature according to the following attributes: machine 

learning models, datasets and accuracy. 
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I. INTRODUCTION 

UR lives are impacted by the Internet of Things in many 

different ways, including our homes, vehicles, trains, 

streets, travel, businesses, and agriculture [2]. But as 

these gadgets become more linked, questions have been 

raised about the reliability and security of IoT 

communications. Ensuring se- cure and dependable device 

interactions become increasingly important as IoT systems 

get larger and more sophisticated. 

Any illegal or hostile activity that aims to jeopardize the 

network’s availability, confidentiality, or integrity is referred 

to as an intrusion [10] in the context of computer networks. 

Network intrusions can take many different forms, and de- 

pending on their traits and goals, they are usually divided into 

several groups. Typical forms of network intrusions include 

the following: 

Denial-of-Service (DoS) Attack: A denial-of-service 

(DoS) assault occurs when an attacker overwhelms a network 

or certain network resources, such as servers or routers, with 

an excessive amount of traffic. The targeted resources are 

overloaded by this large amount of traffic and are unable 

to reply to valid user requests. A denial-of-service (DoS) [2] 

attack aims to interfere with the regular operation of a 

network or service, resulting in downtime and depriving 

authorized users of access to resources. DoS assaults are 

more difficult to counteract since they might originate 

from a single source or from numerous sources (DDoS). 

Distributed Denial-of-Service (DDoS) Attack: DDoS 

assaults are identical to DoS attacks, but they involve the 

coordination of several infected devices, often known as 

bots or zombies, to conduct a coordinated attack against a 

target [11]. By dispersing traffic from several sources, DDoS 

assaults increase their effect and make it more challenging 

for network administrators to monitor or remove suspicious 

content. 

Malware: Any program intended to interfere with, harm, or 

get unauthorized access to computer systems or networks is 

referred to as malware, short for malicious software. Trojan 

horses [12], worms, viruses, ransomware, and spyware are 

examples of common malware. Email attachments, malicious 

websites, and infected portable media are just a few of the 

ways that malware may infect networked devices. Malware 

may carry out a broad range of malicious actions after it 

is placed on a device, such as stealing confidential data, 

interfering with network functions, or giving attackers access 

without authorization. 

Intrusion by Unauthorized Access: Unauthorized access 

happens when a hacker enters a network or system without 

authorization by taking advantage of flaws in pass- words, 

incorrect security configurations, or vulnerabilities [10]. To 

obtain access to network resources, attackers might use a 

number of strategies, including brute-force attacks, password 

guessing, and taking advantage of known flaws. Once within 

the network, attackers can try to steal confidential data, 

advance their privileges, or move widely. 

Port Scanning and Probing: Port scanning and probing 

[10] involve scanning network ports and probing for 

vulnerabilities or weaknesses in networked devices or 

services. Attackers find open ports, services, and possible 

points of access into a network by using port scanning tools. 

Cyber criminals can get data about the target network and 

pinpoint possible targets for exploitation by using port 

O 
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scanning and probing as the initial stage of their 

reconnaissance process. 

 Data Breaches: When private or sensitive data is 

accessed, taken, or made public by uninvited people, it is 

called a data breach. A variety of attack methods, such as 

SQL injection, phishing, social engineering, or taking 

advantage of unpatched vulnerabilities, can lead to data 

breaches. Organizations may face serious consequences 

from data breaches, such as monetary losses, harm to 

their reputation, regulatory fines, and legal obligations. 

[10] All things considered, network breaches present 

serious risks to both persons and companies, 

emphasizing the significance of establishing strong 

security measures in place and routinely checking 

network traffic for unusual activities. A thorough 

network security plan must include firewalls, access 

restrictions, encryption, intrusion detection and 

prevention systems (IDS/IPS), and security awareness 

training. An intrusion detection system (IDS) [7], [12] 

is a security tool that monitors system activity and 

network traffic to look for indications of malicious 

activity, unauthorized access, or policy breaches. An 

intrusion detection system’s main goal is to identify 

possible security issues and notify administrators or 

security staff so they may take the necessary action. 

II.   TYPES OF IDS 

There are two main types of Intrusion Detection Systems: 

Network-based IDS (NIDS): Network Intrusion Detection 

Systems (NIDS) [5] continuously observe network traffic, 

examining packets as they move through network interfaces 

to identify any suspicious behaviors or recognizable attack 

patterns. NIDS sensors are strategically positioned 

throughout the network, often at key locations like the 

network perimeter, behind firewalls, or on critical segments, 

to provide comprehensive coverage. NIDS are capable of 

identifying various types of network-based attacks, such as 

port scans, denial-of- service (DoS) attacks, malware 

infiltration, and unauthorized access endeavors. Network-

based Intrusion Detection Systems (NIDS) [9] can be 

categorized based on their deployment architecture and 

monitoring approach. Here are the main types: 

Traditional NIDS: Traditional NIDS are deployed at 

specific points within the network infrastructure, such as 

at network gateways or behind firewalls. They monitor all 

network traffic passing through their designated monitoring 

points. Traditional NIDS typically use signature-based 

detection [4] methods to identify known patterns of malicious 

activity within network packets. 

Inline NIDS: Inline NIDS are positioned directly in the 

network traffic flow, allowing them to inspect and potentially 

block or modify network packets in real-time. Inline NIDS 

actively participate in the network traffic flow and can take 

immediate action to block or mitigate identified threats. 

These systems often include Intrusion Prevention System 

(IPS) functionality, combining intrusion detection and 

prevention capabilities in a single device. 

Passive NIDS: Passive NIDS operate in a non- intrusive 

manner, monitoring network traffic passively without actively 

participating in the traffic flow. They analyze copies of 

network packets or traffic feeds obtained from network taps, 

port mirroring, or other passive monitoring techniques. 

Passive NIDS are less likely to impact network performance 

but may have limited visibility into encrypted or encrypted 

traffic. 

Distributed NIDS: Distributed NIDS consist of multiple 

sensors or probes distributed throughout the network 

infrastructure. These sensors work together to monitor 

network traffic across different network segments or 

geographical locations. Distributed NIDS provide 

comprehensive coverage of the network and can scale to 

accommodate large and complex network environments.  

Cloud-based NIDS: Cloud-based NIDS [15] are deployed 

in cloud environments to monitor network traffic and detect 

threats within cloud-based infrastructure and services. These 

systems are designed to provide security monitoring and 

threat detection capabilities for cloud-based applications, 

platforms, and virtualized environments. Cloud-based NIDS 

can integrate with cloud-native security services and 

platforms to provide centralized visibility and control over 

cloud-based networks. 

Each type of NIDS has its own advantages and 

limitations, and the choice of deployment architecture 

depends on factors such as network architecture, security 

requirements, performance considerations, and compliance 

requirements. Organizations often deploy a combination of 

NIDS types to provide comprehensive network security 

coverage and address specific security needs. 

The types of Network-based Intrusion Detection Systems 

(NIDS) described earlier focus on deployment architecture 

and monitoring approach. In contrast, packet-based and flow-

based network IDS differ primarily in the level of 

granularity at which they analyze network traffic. Here’s 

how they differ: i) Packet-based NIDS: Packet-based NIDS 

inspect in- dividual network packets in real-time as they 

traverse the network. These systems analyze the contents of 

each packet, including header information and payload data, 

to detect signs of malicious activity. Packet-based NIDS are 

well-suited for detecting specific network attacks that can be 

identified based on characteristics within individual packets, 

such as signature-based attacks or anomalies in packet 

headers. ii) Flow-based NIDS: Flow-based NIDS analyze 

aggregated network traffic flows instead of individual 

packets. Network flows represent sequences of related 

packets between specific source and destination endpoints, 

typically defined by common attributes such as IP addresses, 

port numbers, and transport protocols. Flow-based NIDS 

focus on identifying patterns and anomalies in network 

traffic flows, such as sudden increases in traffic volume, 
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unusual communication patterns, or deviations from normal 

traffic behavior. Flow-based NIDS are often used for 

detecting distributed denial-of-service (DDoS) attacks, 

identifying network scanning activities, and monitoring 

overall network performance and usage. In summary, while 

packet- based NIDS inspect each network packet 

individually, flow- based NIDS analyze aggregated network 

flows to identify patterns and anomalies in network traffic. 

Both approaches have their advantages and limitations, and 

organizations may choose to deploy one or both types of 

NIDS depending on their specific security requirements and 

monitoring objectives. Additionally, packet-based and flow-

based NIDS can be further classified based on their 

deployment architecture, such as traditional, inline, passive, 

distributed, or cloud-based, as described earlier. 

Host-based IDS (HIDS): Host Intrusion Detection 

Systems (HIDS) [10] observe and analyze the actions 

taking place on individual host systems, such as 

servers, workstations, or network devices, to identify 

any suspicious activities or signs of compromise. HIDS 

agents are installed directly onto host systems, allowing 

them to monitor a range of system-level activities 

including system logs, file integrity, system calls, and 

more, in order to detect any potential intrusions. HIDS 

are capable of recognizing various types of attacks that 

target individual host systems, such as unauthorized 

access attempts, efforts to escalate privileges, 

alterations to files, and the installation of malicious 

software. Here are some common types of HIDS: 

i. System Log Monitoring: HIDS can monitor system logs 

generated by operating systems, applications, and services 

running on the host. This type of HIDS analyzes log 

entries for signs of unauthorized access, system 

misconfigurations, software vulnerabilities, or other 

suspicious activities. 

ii. File Integrity Monitoring (FIM): FIM HIDS monitor 

changes to critical system files, directories, and 

configurations. These HIDS compare the current state of 

files and configurations against a known baseline to detect 

unauthorized modifications, tampering, or malware 

infections. 

iii. Registry Monitoring: HIDS can monitor changes to sys- 

tem registries on Windows-based hosts. Registry 

monitoring HIDS analyze registry entries for 

modifications or additions that may indicate unauthorized 

changes or the presence of malware. 

iv. Kernel Module Monitoring: HIDS can monitor the 

loading and unloading of kernel modules (drivers) on 

the host operating system. Kernel module monitoring 

HIDS detect attempts to load unauthorized or malicious 

kernel modules, which can provide attackers with elevated 

privileges or back- door access to the system. 

v. Application Behavior Monitoring: HIDS can monitor the 

behavior of applications running on the host, including 

process creation, network connections, file accesses, and 

system calls. Application behavior monitoring HIDS detect 

anomalous or suspicious behavior that may indicate the 

presence of malware, exploits, or unauthorized activities. 

vi. Anomaly Detection: Some HIDS employ anomaly 

detection techniques to establish a baseline of normal 

behavior for the host system [4]. Anomaly detection HIDS 

monitor deviations from this baseline to detect unusual or 

suspicious activities that may indicate a security incident. 

vii. Endpoint Detection and Response (EDR): EDR 

solutions combine HIDS capabilities with additional 

features for incident response, investigation, and 

remediation. EDR HIDS provide real-time visibility into 

endpoint activities, automated response actions, and 

advanced threat hunting capabilities. These are some of 

the common types of HIDS, each providing specific 

capabilities for monitoring and detecting security 

threats on individual host systems. Organizations often 

deploy a combination of HIDS types to provide 

comprehensive coverage and address various security 

requirements and use cases. 

Detection Techniques: Intrusion Detection Systems can 

operate using different detection techniques, including: 
  

 

Fig. 1. IDS and their types 

 

Signature-based detection: This method involves 

comparing network traffic or system actions with a 

repository of recognized attack patterns or signatures [9]. 

Upon discovering a match, an alert is triggered. 

Anomaly-based detection: Anomaly detection involves 

establishing a standard pattern of normal behavior for the 

network or system and then scrutinizing deviations from this 

norm [9]. These deviations could indicate potential security 

threats or unusual activities. 

Heuristic-based detection: Heuristic detection depends on 

predefined algorithms or rules to identify suspicious behaviors 

or actions that might signal an intrusion. While more adaptable 

than signature-based detection, heuristic-based detection may 

yield a higher rate of false positives. Once an IDS detects 

something fishy going on, it sends out alerts or messages to 
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let administrators or security folks know. These alerts usually 

give details about what’s happening, which part of the system 

or network is affected, and suggestions on what to do next. 

In the world of cybersecurity, IDS play a crucial role that 

spot trouble before it gets out of hand. They’re crucial for 

organizations to catch and deal with security issues quickly, 

making sure attacks don’t cause too much damage and 

keeping the network safe. Often, they team up with Intrusion 

Prevention Systems (IPS), which can automatically respond 

to detected threats by blocking or lessening the impact of 

malicious activities. So, in simpler terms, when an IDS spots 

trouble, it tells the right people so they can take action. 

This helps keep networks safe from cyber threats and ensures 

everything runs smoothly. 

III.   COMPONENTS AND OPERATIONS OF IDS 

Components of an IDS: Sensors or Agents [10]: These are 

the components responsible for collecting data and monitoring 

network traffic or system activities. In Network-based IDS 

(NIDS) [9], sensors are strategically placed at key points in the 

network to monitor traffic. In Host-based IDS (HIDS), agents 

are installed directly on individual host systems to monitor 

their activities. 

Detection Engine: The detection engine is the core com- 

ponent of the IDS responsible for analyzing the collected data 

and detecting suspicious or malicious activities. Depending on 

the detection technique employed (signature-based, anomaly- 

based, heuristic-based), the detection engine compares 

observed patterns against known signatures, baseline 

behaviors, or predefined rules to identify potential intrusions.  

Mechanism: When the IDS detects suspicious activity, it 

generates alerts or notifications to notify administrators or 

security personnel. Alerts typically contain information about 

the detected activity, including the type of intrusion, the 

affected system or network, and any relevant contextual 

information. 

Logging and Reporting: IDS systems often maintain logs 

of detected events and activities for further analysis, forensic 

investigation, or compliance purposes. Detailed reporting 

capabilities allow administrators to review and analyze 

security events over time, identify trends, and assess the 

effectiveness of security measures.  

Response Mechanism (optional): Some IDS systems 

include the capability to respond to detected threats 

automatically. For example, an Intrusion Prevention System 

(IPS) can block or mitigate malicious activities in real- time by 

taking predefined actions, such as blocking network traffic, 

isolating compromised systems, or triggering security alerts. 

Operation of an IDS: 

Data Collection: The IDS collects data from various sources 

[13], such as network traffic (NIDS) or system logs (HIDS), 

using sensors or agents deployed throughout the network or on 

individual host systems. Analysis and Detection: The 

collected data is analyzed by the detection engine using 

predefined detection techniques (signature-based, anomaly-

based, heuristic-based) to identify potential intrusions or 

security incidents. Alert Generation: When suspicious activity 

is detected, the IDS generates alerts or notifications to notify 

administrators or security personnel. Alerts contain detailed 

information about the detected activity, including the type 

of intrusion, severity level, affected system or net- work, and 

any recommended actions. Alert Handling and Response: 

Upon receiving alerts, administrators or security personnel 

review and prioritize them based on their severity and 

potential impact. Depending on the organization’s security 

policies and procedures, they may take appropriate actions to 

investigate, contain, and mitigate the detected threats. Logging 

and Reporting: The IDS logs detected events and activities for 

further analysis, forensic investigation, or compliance 

purposes. Detailed reporting capabilities provide 

administrators with insights into security events, trends, and 

the overall security posture of the network. In summary, an 

Intrusion Detection System (IDS) is a critical security 

technology that helps organizations detect and respond to 

potential security threats, such as unauthorized access, 

malicious activities, or policy violations. By continuously 

monitoring network traffic or system activities and analyzing 

them for signs of intrusion, IDS systems play a crucial role in 

maintaining the security and integrity of computer networks. 

Working of ML Models: 

Intrusion Detection using Machine Learning (ML) involves 

leveraging ML algorithms and techniques to detect and classify 

anomalous or malicious activities within a computer network 

or system. ML-based intrusion detection systems (IDS) can 

analyze large volumes of data to identify patterns and 

deviations indicative of unauthorized access or malicious 

behavior. Their work is also shown in Fig. 2. Here’s how it 

typically works: 

  
 

 
 

Fig. 2. ML Models Working 

 

 

1. Data Collection: ML-based IDS systems collect data from 

various sources within the network, such as network traffic 

logs, system logs, packet captures, and other security- 

related data sources [13]. The data collected may include 

information about network connections, system activities, 

user behavior, and other relevant metadata. 

2. Data Preprocessing: Before feeding the data into ML 

algorithms, preprocessing steps are performed to clean, 

normalize, and transform the data into a suitable format for 

analysis. Preprocessing may involve tasks such as 

handling missing values [5], encoding categorical 

variables, scaling numerical features, and extracting 

relevant features from raw data. 
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3. Feature Extraction: Feature extraction involves selecting 

or deriving relevant features from the raw data that 

capture meaningful information about network behavior 

or system activities [14]. Features may include network 

protocol types, source and destination IP addresses, port 

numbers, packet sizes, timestamps, user login/logout 

events, file access patterns, etc. 

4. Model Training: ML algorithms are trained on labeled 

datasets containing examples of normal and malicious 

activities. [14] Supervised learning algorithms, such as 

Support Vector Machines (SVM), Random Forests, 

Gradient Boosting Machines (GBM), or Deep Learning 

models (e.g., Convolutional Neural Networks, Recurrent 

Neural Networks), can be trained using labeled data to 

classify network traffic or system events as normal or 

anomalous. Unsupervised learning algorithms, such as 

K-means clustering, DBSCAN, Isolation Forest, or 

Autoencoders, can detect anomalies in the data without 

requiring labeled examples of malicious activity. 

5. Model Evaluation: The trained ML models are evaluated 

using separate test datasets to assess their performance in 

detecting intrusions. [8] Evaluation metrics such as 

accuracy, precision, recall, F1-score, and area under the 

ROC curve (AUC-ROC) are used to quantify the 

effectiveness of the models in distinguishing between 

normal and malicious activities. 

6. Deployment and Monitoring: Once trained and 

evaluated, the ML-based IDS models can be deployed in 

production environments to continuously monitor 

network traffic or sys- tem activities in real-time. The 

IDS system generates alerts or notifications when it 

detects suspicious behavior, enabling security analysts to 

investigate and respond to potential security incidents 

promptly. 

ML-based intrusion detection offers several advantages, 

including the ability to adapt to evolving threats, handle large 

volumes of data, and detect previously unseen or zero-day 

attacks. However, it also poses challenges such as the need 

for labeled training data, the risk of false positives/negatives, 

and the interpretability of complex ML models. Continuous 

monitoring, model updating, and collaboration between ML 

experts and cybersecurity professionals are essential for 

building effective ML-based IDS solutions. 

IV.   RELATED WORK 

This section provides a brief overview of ML based 

intrusion detection methods from the literature. We focus on 

the latest published papers for comparison in this study 

because they are state of the art making them currently latest 

to review. While there is other ML intrusion detection-based 

algorithms available, we couldn’t explore them due to time 

constraints. 

The dataset utilized [1 ]  in this research was obtained 

from IEEE Data port which included over 800 samples of 

normal and malicious traffic in binary visualization format 

for the purpose of training models. This study examined 

seventeen models using various feature extractors and 

classification methods. Recall, accuracy, precision, and F1-

score were used to evaluate the models, with accuracy and 

precision having the most significance. Three models—

KNN, SMO, and random forest—were built using 

individual learning methods, and a stacked model that 

combined KNN and SMO was also developed. An 

additional five models were developed using auto-

correlogram and FcTH filters. Three models were based on 

individual learning algorithms, like the first four models 

mentioned above, in addition to two stacked models. Four 

additional models were developed using the DenseNet 

transfer model. Three of these models were based on 

individual learning algorithms, like the first four models 

mentioned above, in addition to a stacked model, KNN and 

SMO, and KNN as the meta classifier. Then four additional 

models were developed using VGG-16 as the transfer 

model. These four models are like the DenseNet models 

regarding training algorithms. When VGG-16 combines the 

stacked model, KNN and SMO, and KNN as the meta 

classifier with k = 3, for 90 percent to 10 percent data 

split, the highest precision and accuracy was obtained. This 

model was chosen as the best model as a result. Using 

characteristics from the UNSW-NB15 dataset, Ah- mad et 

al. [5] suggest feature clusters regarding its flow, Mes- sage 

Queuing Telemetry Transport (MQTT), and Transmission 

Control Protocol (TCP). An imbalanced dataset, 

dimensionality, and overfitting are no longer problems. To 

overcome missing values of features, imputation was done. 

The proposed method used supervised machine learning 

(ML) methods such as random forest (RF), support vector 

machine, and artificial neural networks on the clusters. The 

model reaches 98.67% and 97.37% accuracy using RF in 

binary and multiclass classification. Utilizing RF on flow 

and MQTT features, TCP features, and top features from both 

clusters, classification accuracies of 96.96%, 91.4%, and 

97.54% were obtained using cluster-based approaches. 

In [6] IDS-FMLT model was used to predict 

malicious and regular traffic in the networks. It was tested 

on many heterogeneous datasets, which are CUP-99, KDD, 

and NetML- 2020. The experimental results of this model 

obtained an accuracy of 96.73% for training and 95.18% for 

validation with 4.82% miss rate in intrusion detection. 

This paper [8] presented SecurityBERT for cyber threat 

detection in IoT networks, a new structure that utilized the 

Bidirectional Encoder Representations from Transformers 

(BERT) model. It is a 15-layer BERT-based architecture 

having only 11 million parameters for multi-category 

classification. A novel privacy-preserving encoding 

technique called Privacy- Preserving Fixed-Length 

Encoding (PPFLE) was integrated along with-it during 

training. It utilizes the Byte-level BytePair Encoder (BBPE) 

Tokenizer. In cyber threat detection, it performed better than 

usual ML and Deep Learning (DL) methods, such as 

Convolutional Neural Networks (CNNs) or Re- current 

Neural Networks (RNNs). EdgeIIoTset cybersecurity dataset 

was used and it identified 14 different attack types with 

98.2% overall accuracy outperforming previous records set 
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by hybrid solutions such as GAN-Transformer-based 

architecture and CNN-LSTM models. It needs less 

computational power compared to other ML models with an 

inference time of less than 0.15 seconds on an average CPU 

and a compact model size of just 16.7MB. It can be 

implemented for resource-constrained IoT devices for real 

life traffic analysis. 

Z. Wang et al. [3] introduced BERT-of-Theseus, Vision 

Transformer, and PoolFormer (BT-TPF), an IoT intrusion 

detection model with a knowledge distillation technique 

designed for IoT environments with limited computing 

resources. The model uses a Vision Transformer to train a 

small Poolformer model and a Siamese network to reduce 

features, obtaining a notable parameter reduction while 

maintaining high accuracy. 

[15] They presented a transformer based NIDS model by 

using attention mechanism especially for cloud 

environments and used CIC-IDS 2018 dataset for model 

training and testing. It achieved accuracy above 93 percent 

and was compared against CNN-LSTM model. They trained 

the model in different scenarios (the number of encoder 

layers were 3, 4, or 5) and evaluated its results. 

V.   DISCUSSIONS: FEATURES AND LIMITATIONS 

Synthetic minority [1] oversampling technique (SMOTE) 

approach was used to handle the imbalanced dataset 

which is widely used to oversample the minority class. It 

generates more synthetic examples of the minority class 

throughout the length of the line segments connecting 

some/all the minority class nearest neighbors to do 

oversampling. Two image filters were used: auto-color 

correlogram filter and fuzzy color and texture histogram 

(FcTH) Filter. Unlike color histograms, which only 

represent an image’s color distribution, the auto- color 

correlogram filter shows how the spatial correlation 

between colors changes with distance. Lack of spatial 

knowledge could result in inaccurate predictions. A 

histogram finds it difficult to identify differences between 

the two images due to their similar color context. However, 

because a correlogram uses spatial information, it can easily 

identify the difference. The goal of the fuzzy color and 

texture histogram (FcTH) filter is to ensure that the features 

are sufficiently descriptive of the class while mapping an 

image’s visual attributes to feature space. The FcTH filter 

uses and combines color and texture information from 

images, just like the auto-color correlogram filter. A fuzzy 

linkage histogram, formed by a fuzzy system, contains 

several pins, each of which represents a distinct color in the 

image. There are three fuzzy units in FcTH. The first fuzzy 

unit produces a hue saturation value (HSV) color space in 

10 bins. The 10 bins are increased to 24 bins in the 

second fuzzy unit, then to 192 bins in the third unit. Next, 

the Gustafson–Kessel fuzzy classifier is used to map the 

192-bin histogram into eight regions in the interval 0–7. 

Many filters were used to test a number of models. The 

auto-correlogram filter was used to create the first four 

models. 

 
 

Fig. 3. Comparison analysis of models 

 

But whether the results apply to other datasets or real-world 

situations is not made clear. Evaluating the model’s 

generalizability outside of the experimental context is 

questionable. 

BERT-of-Theseus [3] presents a Siamese network-based 

dimensionality reduction technique is presented that uses 

deep metric learning’s benefits to encode input features. It 

increases the feature similarity between samples from various 

categories and decreases it across samples in the same 

category. It uses ViT-based 9-layer network intrusion 

detection model. This model can handle the challenges like 

limited storage capacity, poor communication environment, 

fewer computing resources, limited power of nodes and 

limited model generalization ability in the IoT network. CIC-

IDS2017 and TON-IoT datasets were used for its training. 

While the effectiveness of this model is shown on two 

particular datasets (TON IoT and CIC-IDS2017), there can 

be concerns about how well it generalizes to other 

datasets or situations from the real world that have distinct 

features. Experiments on particular datasets are mentioned in 

the text, but it doesn’t go into depth on how diverse the 

experiments were or how well the model held up in various 

situations especially where there are mobility scenarios. 

In fused machine learning approach [6] during the 

validation stage, the suggested IDS-FMLT model is assessed 

using the KDD, CUP-99, and NetML-2020 datasets. To 

predict network traffic, the fused model is loaded from the 

cloud. Normal and malicious attacks are the two categories 

of network traffic that the suggested IDS-FMLT model 

predicts. Access is allowed to traffic if the suggested IDS-

FMLT model predicts regular traffic. If malicious traffic is 

predicted by the model, then traffic is blocked and recorded 

as a noted attack in the cloud database. 

On the other hand it causes increased computational 

complexity of system. Other methods such as federated 

learning, long short-term memory (LSTM), and hybrid 

computational intelligence can be used, for less cost and 

improving the system’s accuracy. KDD, CUP-99, and 

NetML-2020 datasets are used but to make this system more 

reliable in real time application, other latest published 

intrusion detection data sets like CIC IoT Dataset 2022 

and other bench marks dataset as well like NSL-KDD or 

UGR16 or UNSW-NB15[13] or CICDS-17, 18, and 19 

during training phase can be used. Also is focused on limited 
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evaluation metrics such as F1 score and recall. 

[5] Data preprocessing was done on the dataset. Its main 

contributions are imputation of missing values by three 

distinct methods: multiple imputations, linear regression, 

and mean. It performed binary and multi-class classification 

of malicious and regular packets by utilizing full features 

(37), TCP features (18), Flow and MQTT features (13) and 

top contributing features selected from TCP and flow and 

MQTT features set (11) and used three distinct supervised 

learning classifiers RF, SVM, and ANN for it. 

More collection of appropriate features related to other 

IoT protocols could be used to increase the detection 

accuracy of known and unknown attacks by using suggested 

methodology. In Privacy-preserving BERT-based 

Lightweight Model [8] they introduced privacy into the 

training data through crypto- graphic hash functions and 

named this technique as Privacy-Preserving FixedLength 

Encoding (PPFLE). It has two main objectives. One is to 

maintain privacy by making sure that only encoded data 

is observed, which results in hiding sensitive information 

in the network data while preserving key classification 

features. Other is to convert unstructured network data 

into a structured format making it like natural English 

language, so that the BERT model can be implemented 

effectively. This dataset includes fifteen (15) types of attacks 

related to Internet of Things (IoT) and Industrial IoT 

(IIoT) connectivity protocols. These attacks are grouped 

into five main categories: DoS/DDoS attacks, Information 

Gathering, Man-in-the-middle (MITM) attacks, Injection 

attacks, and Malware attacks. In the DoS/DDoS attack 

category, examples like TCP SYN Flood, UDP flood, 

HTTP flood, and ICMP flood attacks are included. The 

Information Gathering category covers activities such as 

port scanning, operating system fingerprinting, and 

vulnerability scanning. MITM attacks involve attacks like 

DNS Spoofing and ARP Spoofing. Injection attacks include 

incidents such as Cross-Site Scripting (XSS), SQL 

injection, and file-uploading attacks. 

Lastly, the Malware category covers threats like backdoors, 

password crackers, and ransomware attacks. 

Apart from its advantages, it requires a very large dataset for 

training. As it includes 15 layers of encoders and it extracts 

11 million features, small datasets can not be used for its 

training purposes. If too many features are extracted without 

enough information, the model may not perform well on test 

data and may not generalize well to new samples. A smaller 

dataset increases the likelihood of overfitting, a phenomenon 

in which the model becomes more adept in memorization of 

the training set than at generalizing to new information. 

Overfitting can occur when there is a high probability of 

capturing noise in the data due to feature extraction. 

Developing models on a small dataset with lots of features 

can be time-consuming and computationally costly. As the 

number of features grows, so does the complexity of the 

model, resulting in longer training times. Local databases 

cannot be used for dataset as they may lack packet network 

data. Edge-IIoTset dataset is used for training purpose which 

includes 15 attacks but this model was able to detect 14 

attacks on same dataset. 

[15] This model used 3,4 and 5 encoders. When the number 

of encoder layers was 3, the values of four evaluation indexes 

accuracy, precision, recall and F1-score were 93.38%, 91.7%, 

93.38%, and 92.39% respectively. When the number of 

encoder layers were 4, they were 93.36%, 92.16%, 93.36%, 

and 92.10%. And when the number of encoder layers 

were 5, they were 93.46%, 92.19%, 93.4%, and 92.16%. It 

was designed especially for cloud-based environments. 

Although it was designed for cloud environments but in 

diverse cloud environments such as edge cloud systems, it 

will face challenges due to the distributed nature of 

environment. 

VI.   EVALUATION METRICS 

Evaluation metrics which are chosen for the comparison of 

these papers are mostly accuracy, precision, recall and F1 

score. 

Accuracy: The ratio of accurately predicted occurrences to 

all instances in the dataset is known as accuracy. It evaluates 

how accurate the model’s predictions are overall as shown in 

Eq. (1). 

Accuracy = (TP + TN )/(TP + TN + FP + FN ) (1) 

Precision: Precision evaluates how well the model predicts 

positive predictions. It is the proportion of true positive 

predictions to all of the model’s positive predictions. The 

precision of a model indicates its ability to avoid false 

positives as shown in Eq. (2). 

Precision = TP/(TP + FP )      (2) 

Recall (Sensitivity): Recall, sometimes referred to as 

sensitivity or true positive rate, assesses how well the model 

can distinguish positive examples from all of the dataset’s 

actual positives. It is the proportion of true positive 

predictions to the total number of actual positive instances 

as shown in Eq. (3). 

Recall = TP/(FN + TP )                                    (3) 

F1 Score (F-measure): The F1 score is the harmonic 

mean of precision and recall as shown in Eq. (4). 

F 1 = 2TP/(2TP + FP + FN )                                      (4) 

where True Positive (TP) represents the number of positive 

samples correctly predicted as positive; True Negative (TN) 

denotes the number of negative samples correctly predicted 

as negative; False Positive (FP) signifies the number of 

negative samples incorrectly predicted as positive; and False 

Negative (FN) signifies the number of positive samples 

incorrectly predicted as negative. These values can be 

obtained from the confusion matrix. 
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Table I: Summary of reference papers 

 

Ref. 

 

Dataset Year 

 

Model 

 

Accuracy 

 

Training 

Sample 

 

Testing 

Sample 

 

Advantages 

 

 

Limitations 

 

Performance 

Metrics 

[1] IEEE 

Dataport 

 

2023 ML 

based 

98.30% 90% 10% Takes advantage 

of  VGG-16 

combined with 

stacked 

model 

Limited 

generalizability. 

Results applicable 

on other datasets or 

real-world 

situations are not 

made clear. 

F1 score, 

Recall, 

accuracy and 

precision 

 

[3] CIC-

IDS2017 

and TON-

IoT 

2024 BERT 

based 

99.6% and 

99.4% 

respective

ly 

75% 25% Siamese 

network-based 

dimensionality 

reduction 

technique and 

ViT 

not discussed 

properly in 

mobility scenarios 

F1 score, 

Recall, 

accuracy and 

precision 

[5] UNSW-

NB15 

 

2021 ML 

based 

98.67% 

and 

97.37% of 

accuracy 

in binary 

and multi-

class 

classificati

on 

60% of 

original 

data was 

used from 

dataset 

_ Data 

preprocessing, 3 

types of 

imputations 

(mean, multiple 

and regression) 

on dataset was 

done 

More collection of 

appropriate 

features related to 

other IoT protocols 

could be used 

Accuracy 

[6] CUP-99, 

KDD, and 

NetML- 

2020 

2023 DL 

based 

95.18% 

 

70% 30% IDS-FMLT 

model was used 

to predict 

malicious and 

regular traffic in 

the networks. 

more 

computational 

complexity, not 

trained on latest 

datasets 

 

Accuracy 

 

[8] Edge-

IIoTset 

 

2024 LLM 

based 

98% 

 

80% 20% Privacy-

Preserving 

FixedLength 

Encoding 

(PPFLE) and 15 

layers of 

encoders 

Large dataset is 

required for testing. 

Was trained to 

detect 15 types of 

attacks but was 

able to detect 14. 

 

F1 score, 

Recall, 

accuracy and 

precision 

 

[15] CIC-IDS 

2018 

 

2024 Transfo

rmer 

based 

93% 

 

70% 30% Designed for 

cloud 

environment. 

 

In 

diverse/distributed 

cloud environments 

such as edge cloud 

systems it will face 

challenges due to 

the distributed 

nature of 

environment. 

F1 score, 

Recall, 

accuracy and 

precision 
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VII.   CONCLUSION 

In conclusion, the application of machine learning (ML) 

models in IoT intrusion detection presents a promising 

avenue for enhancing cybersecurity in interconnected 

systems. Through the utilization of various ML techniques, 

such as supervised learning algorithms and deep learning 

architecture, researchers have made significant strides in 

detecting and mitigating cyber threats in IoT networks. 

However, challenges remain, including the need for more 

diverse and comprehensive datasets, the development of 

lightweight models suitable for resource-constrained IoT 

devices, and the continual adaptation to evolving cyber 

threats. Future research efforts should focus on addressing 

these challenges to further advance the effectiveness and 

efficiency of ML-based intrusion detection systems in IoT 

environments. 
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