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Abstract— A Potts mean field feedback artificial neural network 

algorithm is developed and explored for the resource constrained 

project scheduling problem. A convenient encoding of inequality 

constraints is achieved by means of multilinear penalty function. 

An approximate energy minimum is obtained by iterating a set of 

Potts means field equation, is combination with annealing. 

Priority rule-based heuristics are the most widely used scheduling 

methods though their performance depends on the characteristics 

of the projects. To overcome this deficiency, a Potts mean field 

feedback artificial neural network is designed and integrated into 

the scheduling scheme so as to automatically select the suitable 

activity for each stage of project scheduling. Testing on 

Paterson’s classic test problems and comparison with other exact 

method how that the proposed Potts mean field annealing neural 

network based heuristic is able to improve the performance of 

project scheduling.  

 

Keywords— Neural Network, Mean Field Theory, Potts Mean Field 

Theory, Resource-constrained Project Scheduling and Priority Rule-

Based Heuristic 

 

I. INTRODUCTION 

he resource-constrained project scheduling problem 

(RCPSP) is a typical scheduling problem which allocates 

scarce resource over time to perform a set of activities in 

order to minimize the project duration. The problem is known 

to be strongly NPhard. Many optimization methods have been 

proposed for the problem such as exact, priority rule based 

heuristic and metaheuristic methods have been proposed for 

the resource-constrained project scheduling problem (RCPSP). 

The exact methods often adopt mathematical models such 

as integer programming, Talbot (1982), and dynamic 

programming, Gavish and Pirkul (1991), or are based on 

implic enumeration with branch and bound by considering the 

RCPSP as NP-hard problem. But the exact methods may be 

computationally infeasible or face combinatorial explosion 

problem if the practical projects under study are larger or more 

complicated, Leu and Yang (1999), Chan ,Chua and Kannan 

(1996). 

The general heuristic methods adopt priority rules 

reflecting one or multiple factors such as activity’s critical 

index, duration, and minimum late finish time in generation of 

schedules, such as the ones used by Boctor (1990), Padilla and 

Carr (1991), Bell and Han (1991) and Sampson and Weiss 

(1993)). However, there is little basis for choosing one among 

different heuristic rules, and no priority rule dominates all 

other or performs consistently better than others, Davis and 

Patterson (1975). Moreover, the general heuristic methods 

may be trapped within local optima, Lee and Kim (1996). 

The metaheuristic methods or the new generation of 

heuristic algorithms normally include simulated annealing 

(SA), tabu search (TS) and genetic algorithm (GA). SA 

searches for better solutions through repetitive improvement 

(or local alternation) on current solutions. Boctor (1990), Lee 

and Kim (1996) and Bouleimen and Lecocq (1998) have 

applied SA for the RCPSP. TS start with a feasible solution 

and keep improving it in the successive iterations so that a 

local optimum may be escaped in pursuit of a global optimum. 

Its application to the RCPSP includes the works of Pinson et 

al. (1994), Lee and Kim (1996) and Baar et al. (1998). GA is 

based on the mechanisms of evolution and natural genetics and 

has been applied to solve the RCPSP Lee and Kim (1996). The 

three metaheuristic methods have some common features such 

as starting with initial solutions and updating (or improvement) 

them from iteration to iteration. Comparisons of the solution-

solving schemes for the RCPSP show that GA and SA have 

better performance than TS in addition that the metaheuristic 

methods generally outperform the exact or heuristic methods. 

Feedback artificial neural network have turned out to be 

powerful in finding good approximentive solution to difficult 

combinatorial optimization problem, Hopfield and Tank 

(1985), Peterson and soderberg (1989), and Gislen, Peterson 

and Soderberg (1992). The idea it to map the problem onto 

binary or M-state neurons (spin variables) with an appropriate 

energy function. The system is relaxed using mean field theory 

(MFT) techniques in order to avoid local minima. This 

procedure, sometimes called mean field annealing (MFA) give 

an approximate global minimum of the energy. In This paper 

we extend integrate priority rule based heuristics into Potts-

MFA to resource-constrained project scheduling.  

II. PROBLEM DESCRIPTION (RCPSP FORMULATION) 

The RCPSP is normally characterized by objective 

functions, features of resources, and preemption conditions, 

Lee and Kim (1996). Minimization of project duration is often 

used as an objective of the RCPSP, while other objectives such 

as minimization of total project cost and leveling of resource 

usage are also considered. Resources involved in a 

construction project can be renewable (i.e., recoverable after 

serving an activity, such as equipment or crew) or 
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nonrenewable (i.e., limited in amount over project process and 

not recoverable, such as cement or sand). Preemption means 

the activities (e.g., frame installing) in progress can be 

interrupted, while non preemption means the activities (e.g., 

concreting) are not allowed to stop once in progress. The 

classical RCPSP that considers the renewable resources, non-

preemption and minimizing of project duration can be 

formulated as follows, Talbot (1982): 

 

 

{ } 1,2,......,jMin Max F j N=  
(1) 

Subject to: 

, ; 1,2....,k j j kF F D j P j N≤ − ∀ ∈ =  (2) 

1 2 1, 2.........  , ,.......
t

ij i NA
r R i K t S S S≤ = =∑  (3) 

 

where N  is the number of the activities involved in a 

project and jF  is the finish time of activity jj Da , is the 

duration of activity kj Pa ,  is a set of preceding activities (or 

predecessors ) of activity jj Ra ,  is available amount of 

resource i , and i is the number of the resource types; ijr  is the 

amount of resource i required by activity ja , and tA  is a set 

of ongoing activities at t , and )( jjj DFS −=  is the start time 

of activity ja . Formula (1) represents the objective, while 

formulas (2) and (3), respectively, represent precedence 

constraints and resource constraints. 

Definition: tjx ,  is a  variable that values 1 when j  

activity in completed in t  time (0 otherwise). Then i  resource 

quantity needed by j  activity during the ],1[ tt −  interval is: 

  

1

,.
jt D

ij u t

u t

r t x

+ −

=

 
  
 

∑  

 

If H is a project duration upper bound, a simple but not 

very tight value may be obtained using next expression:  

 

1

n

j

j

H D
=

= ∑  
 

Then time to complete j activity can be expressed as:  

 

,

1

.
H

k t

t
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And the minimizing of project duration or summation of 

time to complete all activity can be expressed as:  
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An Integer programming formulation can now be 

formulated as follows:  
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Schedule objective is to minimizing of project duration. 

Set (5) constraints assure that precedence restrictions are met, 

j  activity is followed by k  activity, Set (6) constraints 

ensures that the total i  resource demand at t  time, cannot 

exceed its resource availability. The third set of constraint (7) 

ensures that every activity is processed. When the number of 

activities is large and the planning horizon is long, the RCPSP 

is usually solved using heuristics and metaheuristics, which 

already proved to provide effective solutions. 

III. PRIORITY RULE-BASED HEURISTICS 

Priority rule-based heuristics consist of at least two 

components, including a schedule generation scheme (SGS) 

and priority rules. An SGS determines how a schedule is 

constructed gradually, building a feasible full schedule for all 

activities by augmenting a partial schedule covering only a 

subset of activities in a stage-wise manner. Two schemes are 

usually distinguished. In the serial SGS, a schedule is built by 

selecting the eligible activities in order and scheduling them 

one at a stage as soon as possible without violating the 

constraints. In the parallel SGS, a schedule proceeds by 

considering the time periods in chronological order and in 

each period all eligible activities are attempted to start at that 

time if resource availability allows. For each feasible RCPSP 

instance, a serial SGS searches among the set of active 

schedules which always contains at least one optimal schedule 

for project duration minimization, Kolisch (1996). Therefore, 

the serial SGS is adopted in this paper.  

The serial SGS divides the set of activities into three 

disjoint subsets: scheduled, eligible, and ineligible. An activity 

that is already in the partial schedule is considered as 

scheduled. Otherwise, an activity is called eligible if all its 

predecessors are scheduled and ineligible otherwise. The 

subsets of eligible and ineligible activities form the subset of 
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unscheduled activities. The scheme proceeds in JN =  stages, 

indexed by n . On the thn −  stage, the subset of scheduled 

activities is denoted as nS  and to the subset of eligible 

activities as decision set nD . On each stage, if more than one 

activity is eligible, one activity j  from nD  is selected using 

a  priority rule and scheduled to begin at its earliest feasible 

start time. Then activity j  is moved from nD  to nS  which 

may render some ineligible activities eligible if now all their 

predecessors are scheduled. The scheme terminates on stage 

N  when all activities are scheduled. 

Priority rules serve to resolve conflicts between activities 

competing for the allocation of scarce resources. In situations 

where the decision set contains more than one candidate, 

priority values are calculated from numerical measures which 

are related to properties of the activities, the complete project, 

or the incumbent partial schedule. 

Some well-known priority rules are listed in Table 1, in 

which jES  and jLS  denote the earliest start time and latest 

start time for activity j  according to the critical path method 

(CPM). Latest start or finish time (LST, LFT), slack (SLK), 

Kolisch (1996). 

 
TABLE 1 

PRIORITY RULES FOR RCPSP HEURISTICS 

Rule Extremum Definition 

Latest start time(LST) MIN 
jLS  

Latest finish 

time(LFT) 

MIN 
j jLS p+  

Minimal slack (SLK) MIN 
j jLS ES+  

 

IV. OPTIMIZATION WITH MEAN FILED ANNEALING 

Recurrent networks appear in the context of associative 

memories and difficult optimization problems, Hopfield and 

Tank, (1985). Simple models for magnetic systems (spin 

glasses) have a lot in common with recurrent networks-with an 

atomic spin seen as analogous to the firing state of a neuron – 

and have therefore been the source of much inspiration for 

neural network studies. The Hopfield model is based on the 

energy function: 

 

1

2
ij i j

i j

E w s s
≠

= − ∑  
(8) 

In terms of binary variables (Ising neurons) 1±=is          

(or 0,1) with symmetric weights ijw . With an appropriate 

choice of weights depending on the stored patterns, the model 

serves as an associative memory, with an asynchronous 

dynamics that locally minimizes E, Peterson and soderberg 

(1989): 

 

( 1) sgni ij i j

j i

s t w s s
≠

 
+ =  

 
∑  

(9) 

V. OPTIMIZATION WITH ISING NEURAL NETWORKS 

The archetype of an ANN for optimization is based on a 

Hopfield-type energy function, adapted to a specific problem 

by a dedicated choice of weights. With a slightly modified, 

softer, MF dynamics, with sgn (0) replaced by tanh )/0( T , 

combined with annealing, the resulting MF neurons will relax 

to a stable configuration representing a tentative solution to the 

problem. The key problem here is to reach the global 

minimum or at least a very low-lying local minimum. 

If one attempts to minimize E according to a local 

optimization rule, the system will very likely end up in some 

local minimum close starting point, which is not desired. 

A better strategy is to employ a stochastic algorithm that 

allows for uphill moves. One such method is Simulated 

Annealing (SA), in which configurations are generated 

according to the Boltzmann distribution, Kirkpatrik, Gelatt, 

and Vecchi (1983):  

 

[ ] [ ]1 E s T
P s e

z

−=  
(10) 

With neighborhood search methods. In Equation (10), Z  

is the partition function 

 

[ ]

[ ]E s

s

Z e T−= ∑  (11) 

And T is a temperature representing the noise level of 

system. 0=T  The Boltzmann distributed becomes 

concentrated to the configuration minimizing E . If 

configuration are generated with a slowly decreasing T  

(annealing), they are less likely to get stuck in local minima 

than if T  is set to 0 from the start. Needless to say, such a 

procedure can be very CPU consuming. 

The MF approach aims at approximating the stochastic 

SA method with a set of deterministic equations. To this end, 

introduce for each spin js a new variable iv , living in a linear 

space containing the compact state-space ( 1± ) of the spin, and 

set it equal to the spin with a direct delta function. Then 

Z takes the form 

 
[ ]

[ ]

[ ] ( )
E v T

i i

s i

Z d v e s vδ
−

= −∑ ∏∫  
(12) 

Fourier expending the delta functions in terms of 

conjugate variables iu gives 

)([ ]

[ ]

[ ] [ ] i i iu s vE v T

s i

Z d u d u e e
−−∝ ∑ ∏∫ ∫  

(13) 
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Then carry out the sum over ][s , and write the product as 

a sum in the exponent: 

 

[ ] logcosh
[ ] [ ]

i i ii i
E v T u v u

Z d v d u e
− − +∑ ∑∝ ∫ ∫  

(14) 

The original petition function is now rewritten entirely in 

terms of the new variables ],[ vu , with an effective energy in 

the exponent. So far no approximation has been made. 

We next assume that Z in Equation (14) is dominated by 

external value of the integrand, occurring for iv  satisfying the 

meaning the mean-field equations 

1[ ]
tanhi ij j

ji

E v
v thanh T w v

v T

  ∂
= − ≡   ∂   

∑  

(15) 

The resulting MF variable iv can be seen as 

approximations to the thermal averages Tis 〉〈  of the original 

binary spin. 

The MF equations (15) are solved iteratively, either 

synchronously or asynchronously, under annealing inT . This 

yields a deterministic dynamics, characteristic of a recurrent 

ANN. High temperatures correspond to very smooth sigmoid 

tanh )/0( T , while in the low-temperature limit the step 

function of Equation (9) is recovered, Bahreininejad and 

Topping (1997).  

VI. OPTIMIZATION WITH POTTS NEURAL NETWORK 

For many optimization problems, an encoding in terms of 

binary elementary variables in natural. However, there are 

many problems where the natural elementary decisions are of 

the type one-of- 2〉k . 

Early attempts to approach such problems by neural 

network methods used neuron multiplexing, where for each 

elementary k-fold decision, a set of k  binary 0/1- neurons was 

used, with the additional constraint that precisely one of them 

be on (=1). These syntax constraints were implemented in a 

soft way as penalty terms. this approach dose not yields high-

quality solutions in a parameter-robust way. 

An alternative encoding is to use Potts neurons with the 

syntax constraint built in. In this way the dynamics is confined 

to relevant parts of the solution space (Figure1), leading to 

dramatically improved performance Peterson and soderberg 

(1989). 

VII. POTTS SPINS 

A k -state Potts spin is variable has k  possible values 

(states). For our purposes, the best representation is in terms of 

a vector in the Euclidean space kε . Thus, denoting a  spin 

variable by ).......,( 21 kssss =  the a  the principal unit vector, 

defined by 1,0 == ba ss   for ba ≠  these vectors points to the 

corners of a  regular k -simplex (see Figure 1 the case 

of 3=k ). They are all normalized and mutually orthogonal, 

and fulfill in addition the syntax∑ =
a

as 1 . 

 

Fig. 1.  The volume of solutions corresponding to the neuron multiplexing 

encoding for k=3. The shaded plane corresponds to the solution space of 

corresponding Potts encoding 

The MF equations for a system of Potts spins  with a 

given energy function )(sE  are derived following the same 

path as in the Ising neuron case Rewrite the partition function 

as an integral over iu  and iv  approximate with the maximum 

value of the integrand. 

G
ia

ia

E
u T

v

∂
= −

∂
 

(16) 

ia

ia

u

ia u

b

e
v

e
=
∑  

(17) 

 

Form which it follows that the Potts neurons iv  whish 

approximate the thermal average of is , satisfy  

 

0,       1ia iaa
v v> =∑  (18) 

One can think of the neuron component  
ai

v  as the 

probability for the i the Potts spin to be in state a. for 2=k  

one recovers the formulation of the Ising case in a slightly 

disguised form. 

VIII. REFINEMENTS AND GENERALIZATIONS 

In this section, we will discuss possible complications that 

arise in optimization applications and require special care in 

one way or another. 

A. None-Quadratic Energy Functions 

Not all optimization problems can be encoded in terms of a 

quadratic energy function, even though the state-space can be 

encoded in terms of set Potts neurons. This presents no 
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principal difficulty, and one can still use Equation 8. However, 

a  possible practical problem arises from the induced self-

coupling in the energy function (terms with nonlinearities in a  

single spin), that might affect performance. With a quadratic E 

self-couplings can be avoided by removing all diagonal terms, 

iaabibia sss δ→ . Such a  procedure can be generalized to any 

polynomial E . Although polynomial of at most degree n , this 

can be difficult in practice for large N  Peterson and soderberg 

(1989). 

An efficient and general method for avoiding self-couplings 

altogether is to replace the derivative in Equation (16) by a 

difference: 

 

( ) ( )
1 0

1

ia ia
ia G Gv v
u E E

T = =
 = − −
 

 
(19) 

B. Inequality Constraints 

In the problem mentioned in the previous sections, the 

constraints considered were all the equality Type, 0)( =sf , 

that could be implemented with quadratic penalty 

terms 2
)(sfα . However, in many optimization problems, in 

particular those of resource allocation type one has to deal 

with inequalities. An inequality constraint, 0)( ≤sg  can be 

implemented with penalty term e.g. proportional to 

 

( ) ( ) ( )x f x xφ θ=  (20) 

21
( )

2
f x x x= +

 

(21) 

With θ  the Heaviside step function: 1)( =xθ  if 0〉x  and 0 

otherwise. Of course, such a non-polynomial term in the 

energy function must be handled using Eq. (19). 

IX. POTTS-MEAN FIELD APPROACH TO RCPSP 

Resource-Constrained Project Scheduling Problems are 

NP-Complete and one is stuck to approximate solutions for 

large N problems. We will use the Potts Mean Field Theory 

equations to construct a polynomial-time algorithm. Resource-

Constrained Project Scheduling Problem is mapped onto 

generic energy function GE  with M-state Potts neurons. GE  

Defined by Eq. (14): 
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(22) 

The derivative
ia

G

v

E

∂

∂
is treated exactly as the in the RCPSP 

case. Self-coupling terms are avoided by a linear 

approximation of )( iG vE , and one obtains 
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(23) 

Thus, Table 2 shown as integrated priority rule based 

heuristics into Potts-MFA to resource-constrained project 

scheduling. 

 
TABLE 2 

POTTS-MFA FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING 
 

-Choose problem (Find the energy Function) 

-Set up the weight matrix T 

-Initialize the parameters of problem such as , , ,T α β γ  

 -For 2n −  to j   

Select a priority rule based heuristic 

Calculate nD  

Select  j from nD  according to the priority  

rule selected  

ns  - ns u { j } 

-end for 

-Initialize the neurons ( iav ) with 
1

1n
+

+
 plus a small noise 

factor increment 

-Begin the annealing function 

-Until sigma =

1 1
2

,

1 1

1
0.99

1

n n

j t

j t

v
n

+ +

= =

≥
+ ∑∑   do (sigma=Saturation 

Criteria)  

- While Delta >0.01 do  

           Cost=0 

           Calculate equalities (16, 17) 

           Cost=
,j tu   

           Delta= cos cost old t−  

           Cost=Old Cost 

-  1 0.98k kT T+ =  

- ( *1.5,1)Maxα α=   

- ( *1.5,1)Maxβ β=  

- ( *1.5,1)Maxγ γ=
 

 

X. TESTING AND COMPARISON 

In this section we present the result of the computational 

tests and comparisons with the best published algorithms. The 
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approach is coded in Visual C# and run on an Intel Core 2 

Dou CPU T7500 2.2 GHz personal computer.  

The Paterson’s test problems are adopted to test the 

proposed heuristic, see Patterson (1984). The problem set 

includes 110 scheduling problems, each with 3-50 activities 

and 1-4 renewable resources. The proposed heuristic is applied 

to solve each test problem and the priority rule-based 

heuristics listed in Table 1 are also applied for comparison. 

The computation results are shown in Table 3. The 74.5% of 

schedules generated by the proposed Potts-MFA are optimal. 

And the average error to optimal solutions is 1.1%, which is 

much smaller than the errors of other tested heuristics. The 

descriptive statistics verified sufficiently that the method 

proposed in this paper is able to improve the performance of 

resource constrained project scheduling. It is also noticed that 

for some instances the proposed ANN-based heuristic failed to 

generate near optimal schedules. The maximum error is 

18.2%, for which the test problem has optimal project duration 

of 11 time units and the proposed heuristic generates a 

schedule of 13. Besides, 23.6% schedules have errors within 

10.0%, which indicates the necessity of further improvement. 

 
TABLE 3 

DESCRIPTIVE STATISTICS OF RESULTS OF HEURISTICS 

Heuristic 

Minimu

m 

Error (%) 

Maximu

m 

Error (%) 

Average 

Error 

(%) 

Standard 

Deviatio

n (%) 

Potts-MFA 

heuristic 

0.0 18.2 1.1 2.5 

Latest 

Start 

Time(LST) 

0.0 75.0 27.2 13.3 

Latest 

Finish 

Time(LFT) 

0.0 75.0 24.6 13.1 

Minimal 

Slack 

(SLK) 

0.0 35.0 12.6 9.0 

 

XI. CONCLUSION 

We proposed, developed and tested a priority rule based 

heuristics into Potts-MFA to resource-constrained project 

scheduling. Potts-MFA neural network used for serial schedule 

generation scheme. To the best of our knowledge, this is the 

first time that neural networks based heuristics have been 

applied to the RCPSP. So, research in this approach is still in 

its infancy. We tested this approach on some well-known 

RCPSP benchmark problem instances in the literature. The 

computational results are very encouraging as they compare 

very well with some of the best results in the literature from 

techniques such as priority rule-based heuristics. The 

approach, in spite of being relatively new, gave very good 

results, and therefore appears to be very promising and worthy 

of further exploration. Future research may focus on 

developing some hybrid approaches involving the Potts-MFA 

approach and some of the other successful approach such 

genetic algorithms, to further improve the results. 
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