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Abstract— In the present work, study of thin cylindrical shells 

made of a stainless steel is presented. Material properties are 

graded in the thickness direction of the shell. The objective is to 

study the natural frequencies a cylindrical shell. The study is 

carried out using third order shear deformation shell theory. The 

analysis is carried out using Hamilton’s principle. The governing 

equations of motion of cylindrical shells are derived based on 

shear deformation theory. Results are presented on the frequency 

characteristics and the effects of boundary conditions.  
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I. INTRODUCTION 

ylindrical shells have found many applications in the 

industry. They are often used as load bearing structures 

for aircrafts, ships and buildings. Understanding of 

vibration behavior of cylindrical shells is an important aspect 

for the successful applications of cylindrical shells. Researches 

on free vibrations of cylindrical shells have been carried out 

extensively [1-5]. Recently, the present authors presented 

studies on the influence of boundary conditions on the 

frequencies of a multi–layered cylindrical shell [6]. In all the 

above works, different thin shell theories based on Love–

hypothesis were used. Vibration of cylindrical shells with ring 

support is considered by Loy and Lam [7]. Study of cylindrical 

shell structures is important. In this paper a study on 

cylindrical shells is presented. The study is carried out based 

on third order shear deformation shell theory. The analysis is 

carried out using Hamilton’s principle. Results are presented 

on the frequency characteristics a cylindrical shell with 

stainless steel. 

II. ANALYSIS 

The strain-displacement relationships for a thin shell [8].  
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In this equations 1A  and 2A  are the fundamental form 

parameters or Lame parameters, 1U , 2U  and 3U  are the 

displacement at any point ( 1α , 2α , 3α ), 1R  and 2R are the radius 

of curvature related to 1α , 2α  and 3α  respectively. 

The third- order theory of Reddy used in the present study 

is based on the following displacement field: 
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Substituting Eq. (7) into nonlinear strain-displacement 

relation (1) - (6), it can be obtained for the third-order theory 

of Reddy. 
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Where ),( 00 γε  are the membranes strains and ),,,( 32 γγkk ′  

are the bending strains, known as the curvatures. 

III. FORMOLATION 

For a cylindrical shell withR  is the radius, L  the length 

and h the thickness of the shell. The reference surface is 

chosen to be the middle surface of the cylindrical shell where 

an orthogonal coordinate system zx ,,θ  is fixed. The 

displacements of the shell with reference this coordinate 

system are denoted by 1U , 2U  and 3U  in the θ,x  and z  
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directions, respectively. For a thin cylindrical shell, the stress -

strain relationship are defined as 
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For a isotropic cylindrical shell the reduced stiffness 

ijQ ( i , j=1, 2 and 6) are defined as: 
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where E  is the Young's modulus and ν  is Poisson's ratio. 

Defining 
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where ijQ  are functions of z  for functionally gradient 

materials. Here ijA  denote the extensional stiffness, ijD  the 

bending stiffness, ijB  the bending-extensional coupling 

stiffness and ijijijij HGFE ,,,  are the extensional, bending, 

coupling, and higher-order stiffness. For a thin cylindrical shell 

the force and moment results are defined as 
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IV. THE EQUETIONS OF MOTION FOR GENERIC 

SHELL 

The equations of motion for vibration of a generic shell can be 

derived by using Hamilton's principle which is described by 

∫ =−Π
2

1

0)(
t

t
dtKδ  , VU −=Π                                (17) 

 

Where UK ,,Π and V  are the total kinetic, potential, 

strain and loading energies, 1t and 2t are arbitrary time. The 

kinetic, strain and loading energies of a cylindrical shell can be 

written as: 
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 The infinitesimal volume is given by 

 

32121 ααα dddAAdV =                                                      (21) 

 

The displacement fields for a cylindrical shell and the 

displacement fields which satisfy these boundary conditions 

can be written as: 
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where, A , B , C , D  and E  are the constants denoting the 

amplitudes of the vibrations in the θ,x  and z  

directions, 1φ and 2φ  are the displacement fields for higher 

order deformation theories for a cylindrical shell, )(xφ  is the 

axial function that satisfies the geometric boundary conditions. 

The axial function )(xφ is chosen as the beam function as 
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The geometric boundary conditions for free and clamped 

boundary conditions can be expressed mathematically in terms 

of )(xφ as: 

Substituting Eq. (22) into Eq. (18) - (22) for third order 

theory we can be expressed:  

 

0)(det 2 =− ωijij MC                                                     (24) 

Expanding this determinant, a polynomial in even powers 

ofω  is obtained: 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (25) is solved 

five positive and five negative roots are obtained. The five 

positive roots obtained are the natural angular frequencies of 

the cylindrical shell based third-order theory. The smallest of 

the five roots is the natural angular frequency studied in the 

present study.  

V. RESULTS AND DISCUSSION 

To validate the present analysis, results for cylindrical 

shells are compared with Loy and Lam [9]. The comparisons 

show that the present results agreed well with those in the 

literature. 

 

TABLE I: COMPARISON OF NATURAL FREQUENCY (Hz) FOR A 

CYLINDRICAL SHELL 
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n m Loy[9]      Present 

2 1 2043.8 2043.6 

 2 5635.4 5635.2 

 3 8932.5 8932.1 

 4 11407.5 11407.2 

 5 13253.2 13252.8 

 6 14790.0 14789.8 

 

From the comparisons presented in Table I, it can be seen 

that the present results agree well with those in the literature. 

In this paper, studies are presented for a cylindrical shell. The 

effects of the configuration are studying the frequencies of 

cylindrical shells. This cylindrical shell has stainless steel on 

its outer surface. Fig 1 shows the variations of the volume 

fractions of Stainless Steel, respectively, in the thickness 

direction z  for a cylindrical shell. In Fig. 1, the volume 

fraction for decreased from 1 at z=-0.5h to 0 at z=0.5h.  
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Fig. 1. Variation of volume fraction of stainless steel fssV  with radial 

distance z  in the thickness direction 

VI. CONCLUSION 

A study on the Cylindrical shell composed of stainless 

steel has been presented. The results showed that one could 

easily vary the natural frequency of the cylindrical shell by 

varying the volume fraction. Cylindrical shell and has 

properties that vary continuously from stainless steel on its 

outer surface. The influence of the constituent volume fraction 

on the frequencies for cylindrical shells has been found to be 

different. For the cylindrical shells, the natural frequencies 

decreased when N  increased. The present analysis is 

validated by comparing results with those available in the 

literature. 
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