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Abstract— Study on the vibration of cylindrical shell made of a 

functionally gradient material (FGM) composed of stainless 

steel and nickel is presented. The effects of the FGM 

configuration are studied by studying the frequencies of two 

FGM cylindrical shells. Type I FGM cylindrical shell has 

Nickel on its inner surface and stainless steel on its outer 

surface and Type II FGM cylindrical shell has stainless steel on 

its inner surface and nickel on its outer surface. The study is 

carried out based on third order shear deformation shell 

theory. The objective is to study the natural frequencies, the 

influence of constituent volume fractions and the effects of 

configurations of the constituent materials on the frequencies. 

The properties are graded in the thickness direction according 

to the volume fraction power-law distribution. The governing 

equations are obtained using energy functional with the 

Rayleigh-Ritz method. Results are presented on the frequency 

characteristics, the influence of the constituent various volume 

fractions on the frequencies for a Type I, II FGM cylindrical 

shell. 

 

Keywords– FGM, Vibration and Cylindrical Shell 

 

I. INTRODUCTION 

he study of the vibration of cylindrical shells is an 

important aspect in the successful applications of the 

cylindrical shells. The study of the free vibrations of 

cylindrical shells has been carried out extensively. Among 

those who have studied the vibrations of cylindrical shells 

include Arnold and Warburton [1], Ludwig and Krieg [2], 

Chung [3], Soedel [4], Forsberg [5], Bhimaraddi [6], 

Soldatos and Hajigeoriou [7], Bert and Kumar [8]. The 

concept of functionally gradient materials (FGMs) was first 

introduced in 1984 by a group of materials scientists in 

Japan, [9], [10] as a means of preparing thermal barrier 

materials. Since then FGMs have attracted much interest as 

heat-Shielding materials. FGMs are made by combining 

different materials using power metallurgy methods [11].  

They possess variations in constituent volume fractions 

that lead to continuous change in the composition, 

microstructure, porosity, etc. and these results in gradients in 

the mechanical and thermal properties [12], [13]. Studies on 

FGMs have been extensive but are largely confined to 

analysis of thermal stress and deformation [14], [15] and 

[16]. Najafizadeh and Isvandzibaei presented the vibration  
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of functionally graded cylindrical shells based on higher 

order shear deformation plate theory with ring support [17]. 

The advantage of on FGMs is that desired mechanical 

properties can be tailored and this holds enormous 

application potential for FGMs. In this paper a study on the 

vibration of cylindrical shells composed of functionally 

gradient material (FGM) is presented. The functionally 

gradient material considered is composed of stainless steel 

and nickel where the volume fractions follow a power–law 

distribution. The objective is to study the natural 

frequencies, the influence of constituent volume fractions, 

and the effects of configurations of the constituent materials 

on the frequencies for two kind of FGM cylindrical shell. 

The analysis of the functionally graded cylindrical shell 

is carried out using third order shear deformation shell theory 

and solved using Rayleigh-Ritz method with energy 

functional, obtained using an energy approach. The 

displacement fields employ consist of some beam eigen-

functions of vibrations that guarantee satisfaction of edge 

boundary conditions.  

II. ANALYSIS 

Consider a cylindrical shell is shown in Fig.1. R  is the 
radius, L  is the length and h is the thickness. The reference 
surface is chosen to be the middle surface of the cylindrical 

shell where an orthogonal coordinate system zx ,,θ  is fixed. 

The deformations of the shell with reference to this 

coordinate system are denoted by 1U , 2U  and 3U  in the 

θ,x  and z  directions, respectively. 

 
 

Fig. 1. Geometry of a FGM cylindrical shell 

 

For a thin cylindrical shell, plane stress condition can be 

assumed. The constitutive relation for a thin cylindrical shell 

is consequently given by the tow-dimensional Hook's law as 

{ } [ ]{ }εσ Q=                                                           (1) 

where, { }σ  is the stress vector, { }ε  is the strain vector and 
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[ ]Q  is the reduced stiffness matrix. The stress vector for 

plane stress condition is  

{ } { }2313122211 σσσσσσ =T
                          (2)                                                        

 

where 11σ is the stress in x direction, 22σ  the stress in the 

θ  direction and 12σ  is the shear stress on the θx  plane 

and 13σ  is the shear stress on the zx  plane and 23σ  is the 

shear stress on the zθ  plane. The strain vector is defined as  

 

{ } { }2313122211 εεεεεε =T
       (3)                                                  

 

where 11ε  is the strain in x direction, 22ε  the strain in the 

θ  direction and 12ε  is the shear strain on the θx  plane 

and 13ε  is the shear strain on the zx  plane and 23ε  is the 

shear strain on the zθ  plane. The reduced stiffness [ ]Q  

matrix is given as 
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For an isotropic cylindrical shell the reduced stiffness 

ijQ  ( i , j=1, 2 and 6) are defined as 
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where E  is the Young's modulus and ν  is Poisson's ratio. 
For a thin cylindrical shell the force and moment results are 

defined as 
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The constitutive equation is obtained as 

 

{ } [ ]{ }εSN =                                                    (11)                                                          

                                                                                                                  

where }{N  and { }ε  are, respectively, defined as 
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and ][S  is defined as  
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where A, B, E, D, F, H and G are the extensional, coupling 

and bending stiffness matrices and ijQ  are functions of z  

for functionally gradient materials. Here ijA  denote the 

extensional stiffness, ijD  the bending stiffness, ijB  the 

bending-extensional coupling stiffness and ijijijij HGFE ,,,  

are the extensional, bending, coupling, and higher-order 

stiffness. Defining 
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The strain energy and kinetic energy of a cylindrical 

shell can be defined as: 

                        

{ } { }∫∫∫= dVU
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where, ρ  is the mass density, { }ε  is the strain vector and 

{ }σ  is the stress vector. By substituting from Eq. (1), the 

strain and kinetic energies can be written as  
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where{ }ε  is the strain vector defined in Eq. (13) and ][S  is 

the stiffness matrix defined in relation (14). The parameter 

Tρ  is the density per unit length defined as 
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The displacement fields for a cylindrical shell can be written 

as: 
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where, A , B ,C ,D  and E  are the constants denoting the 

amplitudes of the vibrations in the θ,x  and z  directions, 

)(xφ  is the axial function that satisfies the geometric 

boundary conditions, n  denotes the number of 

circumferential waves in the mode shape and ω  is the 
natural angular frequency of the vibration. The axial 

function )(xφ is chosen as the beam function as: 
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where )4,...,1( =iiα are some constants with value 0 or 1 

chosen according to the boundary conditions. mλ , are the 

roots of some transcendental equations and mζ  are some 

parameters dependent on mλ . The )4,...,1( =iiα , the 

transcendental equations and the parameters mζ  

considered. To determine the natural frequencies, the 

Rayleigh-Ritz method is used. The energy functional Π  

defined by the Lagrangian function as  

                                                                                                                             

maxmax UT −=Π                                                  (23) 

 

Substituting Eq. (21) into Eqs. (18) and (19) and minimizing 

the energy functional Π  with respect to the unknown 

coefficients as follows, 
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In Eq. (23), Tmax and Umax are the maximum kinetic energy 

and strain energy, respectively. In Eq. (24), the five 

governing eigenvalue equations can be obtained. These five 

governing eigenvalue equation can be expressed in matrix 

from as 
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The eigenvalue equations are solved by imposing the non-

trivial solutions condition and equating the determinant of 

the characteristic matrix ][ ijC  to zero. Expanding this 

determinant, a polynomial in even powers of ω  is obtained 
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where )5,4,3,2,1,0( =iiβ  are some constants. Eq. (26) is 

solved five positive and five negative roots are obtained. 

The five positive roots obtained are the natural angular 

frequencies of the cylindrical shell in the x  , θ  and z  
directions. The smallest of the five roots is the natural 

angular frequency studied in the present study. 

III.  RESULTS AND DISCUSSION 

In this paper studies are presented on the vibration of 

simply supported functionally graded (FG) cylindrical shell. 

The functionally gradient material (FGM) considered is 

composed of stainless steel and nickel and its properties are 

graded in the thickness direction according to the volume 

fraction power-law distribution. The influence of constituent 

volume fractions is studied by varying the volume fractions 

of the stainless steel and nickel. This is carried out by 

varying the value of the power law exponent N . The effects 

of the FGM configuration are studied by studying the 

frequencies of two FG cylindrical shells. Type I FG 

cylindrical shell and Type II FG cylindrical shell. Type I FG 

cylindrical shell has Nickel on its inner surface and stainless 

steel on its outer surface and Type II FG cylindrical shell has 

stainless steel on its inner surface and nickel on its outer 

surface. The material properties for stainless steel and 

nickel, calculated at KT 300= , are presented in table 1 

 

TABLE I 

PROPERTIES OF MATERIALS 
Coefficients Stainless Steel Nickel 

E ν  ρ  
E ν  ρ  

P 0  
201.04× 10

9
 0.3262 8166 223.95× 10

9
 0.3100 8900 

P 1−  0 0 0 0 0 0 

P 1  
3.079× 10-4 

-

2.002× 10
-4
 

0 -2.794× 10-4 0 0 

P 2  
-6.534× 10

-7
 

3.797× 10
-7
 

0 -3.998× 10
-9
 0 0 

P 3  
0 0 0 0 0 0 

 2.07788× 10
1

1
 

0.317756 8166 2.05098× 10
1

1
 

0.3100 8900 
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To validate the present analysis, results for cylindrical 

shells are compared with Chung [20]. The comparisons 

show that the present results agreed well with those in the 

literature. 

 
TABLE II 
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1380.3668 

 
0.3117 

 
0.235887 

 
Tables 3 and 4 show the variations of the volume fractions 

fV  of Nickel and Stainless Steel, respectively, in the 

thickness direction z  for a Type I FG cylindrical shell. the 

volume fraction for Nickel fNV  decreased from 1 at 

hz 5.0−= to 0 at hz 5.0=  and the volume fraction of 

Stainless Steel fssV  increased from 0 at hz 5.0−= to 1 

at hz 5.0= .  

 
 

TABLE III 

VARIATION OF THE VOLUME FRACTION fssV IN THE 

THICKNESS DIRECTION z FOR A TYPE I FG CYLINDRICAL SHELL 
 

      

z  
fssV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 

-0.5h 

-0.4h 

-0.3h 

-0.2h 

-0.1h 

0 

0.1h 

0.2h 

0.3h 

0.4h 

0.5h 

 

 

0 

0.3162 

0.4472 

0.5477 

0.6324 

0.707 

0.7745 

0.8366 

0.8944 

0.9486 

1 

 

0 

0.1995 

0.3241 

0.4305 

0.5265 

0.6155 

0.6993 

0.7790 

0.8553 

0.9289 

1 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 

0 

0.01 

0.04 

0.09 

0.16 

0.25 

0.36 

0.49 

0.64 

0.81 

1 

 

0 

0.00001 

0.00032 

0.00243 

0.01024 

0.03125 

0.07776 

0.1680 

0.3276 

0.5904 

1 

 

0 

110 15 ×−
 

27.310 11 ×−
 

43.110 8 ×−
 

0.00000107 

0.00003051 

0.0004701 

0.004747 

0.03518 

0.20589 

1 

 

 

 

 

 

 

 

 

 

TABLE IV 

VARIATION OF THE VOLUM FRACTION fNV  IN THE THICKNESS 

DIRECTION z FOR A TYPE I FG CYLINDRICAL SHELL 
 

      

z  

fNV  

N=0.5 N=0.7 N=1 N=2 N=5 N=15 

 

-0.5h 

-0.4h 

-0.3h 

-0.2h 

-0.1h 

0 

0.1h 

0.2h 

0.3h 

0.4h 

0.5h 

 

 

1 

0.6837 

0.5527 

0.4522 

0.3675 

0.2928 

0.2254 

0.1633 

0.1055 

0.0513 

0 

 

1 

0.8004 

0.6758 

0.5694 

0.4734 

0.3844 

0.3006 

0.2209 

0.1449 

0.0710 

0 

 

 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

 

1 

0.99 

0.96 

0.91 

0.84 

0.75 

0.64 

0.51 

0.36 

0.19 

0 

 

1 

0.9999 

0.9996 

0.9975 

0.9897 

0.9687 

0.9222 

0.8319 

0.6723 

0.4095 

0 

 

1 

1 

1 

0.9999 

0.9999 

0.9999 

0.9995 

0.9952 

0.9648 

0.7941 

0 

IV. CONCLUSIONS 

A study on the vibration of functionally graded (FG) 

Cylindrical shell composed of stainless steel and nickel has 

been presented. The study was carried out for two types of 

functionally graded cylindrical shells where the 

configurations of the constituent materials in the functionally 

graded cylindrical shells are different. One is termed as a 

Type I FG cylindrical shell and has properties that vary 

continuously from nickel on its inner surface to stainless 

steel on its outer surface. The other is termed as a Type II 

FG cylindrical shell and has properties that vary 

continuously from stainless on its inner surface to nickel on 

its outer surface. The analysis of the functionally graded 

cylindrical shell is carried out using third order shear 

deformation shell theory and solved using Rayleigh-Ritz 

method with energy functional, obtained using an energy 

approach. Studied were made on study the natural 

frequencies, the influence of constituent volume fractions, 

the effects of configurations of the constituent materials on 

the frequencies for two kind of FG cylindrical shell and the 
influence of boundary conditions simply support on the 

frequencies. The study showed that the constituent volume 

fractions and the configurations of the constituent materials 

affect the natural frequencies. However, because of the 

functionally graded cylindrical shells exhibit interesting 

frequency characteristics when the constituent volume 

fractions are varied. This is done by varying the power law 

exponent N . The influence of the constituent volume 

fraction on the frequencies for Type I and II FG cylindrical 

shells has been found to be different. For the Type I FG 

cylindrical shells, the natural frequencies decreased when 

N  increased, and for the Type II FG cylindrical shells, the 

natural frequencies increased when N  decreased.  
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