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Abstract— Economic Load Dispatch (EDC) and Direct Current 

Optimal Power Flow (DCOPF) are the most important techno-

economical issues in the power system operation. In this paper, 

two approaches are incorporated in the EDC and DCOPF 

problems. One of them is a mathematical optimization technique, 

Lagrangian Relaxation (LR) and the second is a heuristic one, 

Particle Swarm Optimization, (PSO). Both techniques have 

strong and weak points. The LR technique is based on the 

derivatives and the PSO is a non- derivative technique. These 

approaches are effective tools which can be implemented for 

short-term and long-term power system analysis, especially for 

economic analysis of restructured power systems. The DCOPF 

methodology has been considered for LMP calculation in LR, 

which is not available in PSO techniques. In the other hand, PSO 

technique may be able to provide the optimal solution, where LR 

usually getting stuck at a local optimum in a large scale power 

system. The simulation results show that the presented methods 

are both satisfactory and consistent with expectation. 

 

Keywords— Particle Swarm Optimization, Lagrangian Relaxation, 

DC-Optimal Power Flow, Economic Load Dispatch and Power 

System Economic   

 

List of symbols 

i  Index for bus 

j  Index for line 
ug  Index for generation unit 

ud  Index for load demand 

NB  Total number of buses 

NL  Total number of lines 

NU  Total number of units 

ND  Total number of loads 

( , )P i ug  Power produced by unit ug at bus i 

( , )D i ud  Power demanded by consumer ud at bus i 

( , )C i ug  Offered price of unit ug at bus i 

( )PG i  Total generation at bus i 

( )PD i  Total demand at bus i 
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( , )A i j  
Incidence matrix (node and branch) 

( , )X j j  Diagonal reactance matrix 

( )iδ  Voltage angle of bus i 

( )iλ  Dual variable of the balance constraint at 

bus i 

( )PL j  Transmission line j capacity 

I. INTRODUCTION 

he competitive environment of electricity markets 

necessitates wide access to transmission and distribution 

networks that connect dispersed customers and suppliers. 

Moreover, as power flows influence transmission charges, 

transmission pricing may not only determine the right of entry 

but also encourage efficiencies in power markets. For example, 

transmission constraints could prevent an efficient generating 

unit from being utilized. A proper transmission pricing scheme 

that considers transmission constraints or congestion could 

motivate investors to build new transmission and/or generating 

capacity for improving the efficiency. In a competitive 

environment, proper transmission pricing could meet revenue 

expectations, promote an efficient operation of electricity 

markets, encourage investment in optimal locations of 

generation and transmission lines, and adequately reimburse 

owners of transmission assets. Most important, the pricing 

scheme should implement fairness and be practical.  

However, it is difficult to achieve an efficient transmission 

pricing scheme that could fit all market structures in different 

locations. The ongoing research on transmission pricing 

indicates that there is no generalized agreement on pricing 

methodology. In practice, each country or each restructuring 

model has chosen a method that is based on the particular 

characteristics of its network. Measuring whether or not a 

certain transmission pricing scheme is technically and 

economically adequate would require additional standards [1]. 

In 1962, Carpentier introduced a generalized nonlinear 

programming (NLP) formulation of the economic dispatch 

(ED) problem including voltage and other constraints. The 

problem was later named OPF. The OPF procedure consists of 

determining the optimal steady-state operation of a power 

system, which simultaneously minimizes the value of a chosen 

objective function and satisfies certain physical and operating 

constraints. Today OPF has been playing a very important role 

in power system operation and planning: different classes of 

OPF problems, tailored towards special-purpose applications 
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are defined by selecting different function to be minimized, 

different sets of controls and different sets of constraints [2]. 

Since OPF was introduced in 1968 [3], several methods 

have been employed to solve this problem, e.g., Gradient base 

[3], linear programming method [4] and quadratic 

programming [5-7]. However, all of these methods suffer from 

three main problems. Firstly, they may not be able to provide 

the optimal solution and usually getting stuck at a local 

optimum [8]. Secondly, all these methods are based on the 

assumption of continuity and differentiability of the objective 

function, which is not true in a practical system [9]. 

Finally, all these methods cannot be applied with discrete 

variables which are transformer taps. It seems that heuristic 

optimization algorithms are appropriate methods to solve this 

problem, which eliminate the above drawbacks. 

When the transmission becomes congested, meaning that 

no additional power can be transferred from a point of 

injection to a point of extraction, more expensive generating 

units may have to be brought on-line on one side of the 

transmission system. In a competitive market, such an 

occurrence would cause different locational marginal prices 

(LMPs) between the two locations. If transmission losses are 

ignored, a difference in LMPs would appear when lines are 

congested. Conversely, if flows are within limits, LMPs will be 

the same at all buses and no congestion charges would apply. 

The difference in LMPs between the two ends of a congested 

line is related to the extent of congestion and MW losses on 

this line. Since LMP acts as a price indicator for both losses 

and congestion, it should be an elementary part of transmission 

pricing [10]. 

The locational marginal pricing is a dominant approach in 

energy market operation and planning to identify the nodal 

price and to manage the transmission congestion LMP has 

been implemented under consideration at the number of ISO's 

such as PJM, New York ISO , ISO-New England, California 

ISO, and Midwest ISO [11-13]. 

Locational marginal prices may be decomposed into three 

components: marginal energy price, marginal congestion price, 

and marginal loss price [10, 14-15]. The LMP can be 

calculated by the Optimal Power Flow (OPF) and DCOPF-

based simulations. The DCOPF has been used by many 

utilities for price forecasting and system planning [14], [16]. 

In many paper LMP calculated as a deterministic variable 

[14]. Considering the uncertainties associated with the input 

data of load flow, the LMP can be considered as a stochastic 

variable. Therefore calculation of LMP as a random variable 

can be very useful in power market forecasting studies [16]. 

Other method is Point Estimation Method (PEM) [16-17]. 

This method used two or more point to calculate mean and 

variance of desired variable and estimate PDF and CDF of this 

variable. 

Point Estimation Method (PEM) has lack of accuracy 

although has a good speed. It can be seen that the results of 

point estimation method in [16] have a few differences from 

deterministic calculation. Several earlier works [18-22] have 

reported the modeling of LMPs, especially in marginal loss 

model and related issues. Reference [18] points out the 

significance of marginal loss price, which may differ up to 

20% among different zones in New York Control Area based 

on actual data. Reference [19] presents a slack-bus-

independent approach to calculate LMPs and congestion 

components. 

Reference [20] presents a real-time solution without 

repeating a traditional power flow analysis to calculate loss 

sensitivity for any market-based slack bus from traditional 

Energy Management System (EMS) products based on 

multiple generator slack buses. Reference [21] demonstrates 

the usefulness of dc power flow in calculating loss penalty 

factors, which has a significant impact on generation 

scheduling. The authors of [21] also point out that it is not 

advisable to apply predetermined loss penalty factors from a 

typical scenario to all cases. Reference [22] presents LMP 

simulation algorithms to address marginal loss pricing based 

on the dc model. From the viewpoint of generation and 

transmission planning, it is always crucial to simulate or 

forecast LMPs, which may be obtained using the traditional 

production (generation) cost optimization model, given the 

data on generation, transmission, and load [23], [15]. 

Typically, dc optimal power flow (DCOPF) is utilized for 

LMP simulation or forecasting based on production cost model 

via linear programming (LP) owing to LP’s robustness and 

speed. The popularity of DCOPF lies in its natural fit into the 

LP model. Moreover, various third-party LP solvers are 

readily available to plug into DCOPF model to reduce the 

development effort for the vendors of LMP simulators [14].  

This paper is organized as follows: Theoretical 

consideration of classical economic dispatch is presented in 

the next section. Direct current optimal power flow and its 

modeling in LR and PSO are presented in section III. 

Simulation results are presented in section IV and conclusion 

of this paper is conducted in last section.  

II. CLASSICAL ECONOMIC DISPATCH 

The economic dispatch (EDC) problem consists in 

allocating the total demand among generating units so that the 

production cost is minimized. Generating units have different 

production costs depending on the prime energy source used to 

produce electricity (mainly coal, oil, natural gas, uranium, and 

water stored in reservoirs). And these costs vary significantly; 

for example, the marginal costs for nuclear, coal, and gas units 

may vary considerably, taking on values ranging between 

$0.03 and $0.20 per kWh. In addition to the continuous 

decisions on how to allocate the demand among generating 

units (EDC), a decision that involves calculating the MW 

outputs of all units (a set of continuous variables). Each 

generating unit is assigned a function, Ci (PGi), characterizing 

its generating cost in $/h in terms of the power produced in 

MW, PGi, during 1 h. This function is obtained by multiplying 

the heat rate curve, expressing the fuel consumed to produce 

1MW during 1 h, by the cost of the fuel consumed during that 

hour. Note that the heat rate is a measure of the energy 

efficiency of the generating unit. The cost function is generally 

approximated by a convex quadratic or piecewise linear 

function, as illustrated in Fig. 1 [24] or maybe has a non-

convex nature as non-convex production function which 

describes in next section. 
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Fig. 1. Examples of cost functions: (a) convex quadratic and (b) piecewise 

linear [24] 

 

Considering n generating units, the total production cost is: 

1

( ) ( )
n

G i Gi

i

C P C P
=

=∑                                                        (1) 

where PG is the column vector of the unit generation levels 

PGi. 

If the system total demand is PD and all generating units 

contribute to supply this demand, total production or 

generation must equal the total demand. 

1

n

Gi

i

P PD
=

=∑                                                                   (2) 

The EDC problem consists of minimizing the total cost (1) 

with respect to the unit generation outputs, PGi, subject to the 

power balance (2), and to the generating unit operational 

limits, 
min max
Gi Gi GiP P P≤ ≤                                                         (3) 

where superscripts “min” and “max” indicate minimum and 

maximum, respectively [24]. 

III. DIRECT CURRENT OPTIMAL POWER FLOW 

The lossless DCOPF can be modeled as the minimization 

of the total production cost subject to energy balance and 

transmission constraints. The voltage magnitudes are assumed 

to be unity and reactive power is ignored. Also, it is assumed 

that there is no demand elasticity. This model may be written 

as NLP: 

1 1

[ ( ( , ))]
NB NU

i ug

Min f P i ug
= =
∑∑                                           (4) 

Where 
2( ( , )) ( , ) ( , )f P i ug aP i ug bP i ug c= + +  

Subject to: 

1

( ) ( , )
NU

ug

PG i P i ug
=

=∑                                                 (5) 

1

( ) ( , )
ND

ud

PD i D i ud
=

=∑                                                (6) 

1

( ) ( ) ( , )* ( ) ( )
NL

j

PG i PD i A i j PL j iλ
=

− = ⊥∑      (7) 

1 1

( , )* ( ) ( , )* ( )
NB NL

T

i j

A i j i X j j PL jδ
= =

=∑ ∑            (8) 

min max( ) ( ) ( )PL j PL j PL j≤ ≤                                 (9) 

min max( , ) ( , ) ( , )P i ug P i ug P i ug≤ ≤                      (10) 

A. Lagrangian Relaxation DCOPF [1] 

Aggregated generation and demand at each bus are 

represented in (5) and (6), respectively. Generation and 

demand balance addressed in (7) by implementing the 

incidence matrix, this equation corresponds with injection 

power through power transmission lines connected to bus i. 

Locational marginal price is the dual variable of the balance 

constraint at bus i and indicated as λ(i). Power transmitted 

through transmission lines is indicated as (8) using 

correspondence diagonal reactance matrix, X.  

Constraints (9) and (10) enforce the transmission capacity 

limits of each line and each generation unit, respectively. The 

first step is extracting corresponding incidence matrix of the 

network. Fig. 2 shows a simple network which consists of 

three buses and three lines. Each network can be represented 

as a graph and such a directional graph. Each bus indicated as 

a node and each transmission line addressed as a directed 

branch. In the corresponding incidence matrix, nodes and 

branches indicated as rows and columns, respectively. In the 

incidence matrix, “1” indicates if branch leaves node, “-1” if 

branch arrives at node and “0” if no connection.  

   

B.1 B.2 

B.3 

L.1 

L.2 L.3 

 
 

Fig. 2 Simple power system 

 

It should be noted that the mathematical formulation in 

this paper extends the general formulation of single generator 

and single load for each bus. Aggregated production and load 

demand are modeled in this paper. Despite of recent papers 

which claim that actual implementation can be more 

complicated considering multiple generators and loads [14], 

the incidence matrix based formulation ignores both multiple 

generation units and multiple transmission lines between 

buses. 

It also should be noticed that implementing the incidence 

matrix methodology eliminates the network interdependencies 

because of admittance matrix structure in conventional power 

flow. This approach would be useful in contingency analysis 

of power network. In contingency analysis it is very important 

to utilize a fix algorithm and eliminating the topological 

changes. For multiple generation units which installed in each 

bus, contingency analysis would be easily carried out, but for 

transmission line contingencies because of changing the 

admittance elements but in the incidence matrix formulation 

this objection has been removed.  

The incidence graph is illustrated as Fig. 3, and Table I 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 2, NO. 9, DECEMBER 2011 

[ISSN: 2045-7057]                                                                                    www.ijmse.org                                                                                     11 

represents the corresponding incidence matrix. 

 

B.1  B.2  

B.3  

L.1  

L.2  L.3  

 
 

Fig. 3 Directional graph of simple power system 

 

 
Table I Incidence matrix of simple power network 

A(i,j) 
Lines 

1 2 3 

 B
u
se

s 

1 1 1 0 

2 -1 0 1 

3 0 -1 -1 

 

The diagonal reactance matrix is easily extracted from 

grid. For example X(1,1) indicates the first line, L.1 in the 

grid. Similarly, X(2,2) and X(3,3) imply L.2 and L.3, 

respectively. 

One of the advantages of this network representation by 

using incidence matrix is appeared in contingency analysis 

which outages of both generation units and transmission lines 

would be modeled easily. For example, when a transmission 

line outage is occurred, by assigning “0” in line capacity, the 

entire impacts of corresponding transmission line is eliminated 

easily. 

B. Particle Swarm Optimization DCOPF 

In this section particle swarm optimization DCOPF is 

presented in which the hourly EDC is also included.  

Particle Swarm Optimization (PSO) is an algorithm 

developed by [25] that simulates the social behaviors of bird 

flocking or fish schooling and the methods by which they find 

roosting places, food sources, and suitable habitat. 

In the basic PSO technique, suppose that the search space 

is d-dimensional, such that: 

• Each member is called a particle, and each particle (i-th 

particle) is represented by d-dimensional vector and 

described as [ ]1 2, , ,i i i idX x x x= K  

• The set of n particles in the swarm are called population 

and described as pop = [X1,X2,….,Xn] 

• The best previous position for each particle (the positions 
giving the best fitness value) is called particle best and 

described as [ ]1 2, , ,i i i idPB pb pb pb= K  

• The best position among all of the particle best position 

achieved so far is called global best and described as 

[ ]1 2, , , dGB gb gb gb= K  

• The rate of position change for each particle is called the 
particle velocity and it is described as 

[ ]1 2, , ,i i i idV v v v= K  

• At iteration k the velocity for d-dimension of i particle is 

updated by: 

 

( ) ( )1

1 1 2 2

k k k k k k

id id id id d idv wv c r pb x c r gb x
+ = + − + −  

 

where 1,2, , ,i n= K  and n  is the size of population, w is the 

inertia weight, 1c  and 2c  are the acceleration constants, and 1r  

and 2r  are two random values in range [0,1]. The optimal 

selection of previous parameters is found in [26-27] 

 

• The i-particle position is updated by: 

 
k 1 k k k k k
id id 1 1 id id 2 2 d idv wv c r pb x c r gb x
+ = + − + −( ) ( )

         (11) 

 

The PSO technique can be expressed as follow: 

 

Step 1. (Initialization): Set the iteration to number k=0. 

Generate randomly n particles, {X0i , i = 1, 2, …., 

n}, where 0 0 0 0

1 2, , ,i i i idX X X X =  K , and their initial 

velocities 0 0 0 0

1 2, , ,i i i idV V V V =  K . Evaluate the 

objective function for each particle ƒ(X0i). If the 

constraints are satisfied, then set the particle best 

PB
0
i = X

0
i, and set the particle best which gives the 

best objective function among all of the particle 

bests to global best, GB0. Otherwise, repeat the 

initialization. 

Step 2. Update iteration counter k=k+1 

Step 3. Update velocity using Eq. (11) 

Step 4. Update particle best: 

( ) ( )1
1

k k k k

i i i i i i

k k

i i

if f X f PB then PB X

else PB PB

−

−

< =

=
 

Step 5. Update global best : 

( ) ( ){ }
( ) ( )1

1

mink k

i i

k k k k

k k

f GB f PB

if f GB f GB then GB GB

else GB GB

−

−

=

< =

=

 

Step 6. Stopping criterion: If the number of iterations 

exceeds the maximum number iteration, then stop, 

otherwise go to step 2 [28]. 

In order to implement the PSO to the DCOPF problem, 

the variable matrix is included production level of generation 

units and bus angles, except slack bus in which the bus angle is 

set to zero. In the other words, [ ]1 2, , ,i i i idX x x x= K  is 

constructed by the PGi and δi where δSlack=0. 

The main objective function includes total operation cost, 
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transmission flow violation penalty and load imbalance penalty 

and represent as follows: 

 

( )

2

1 1

max

1

( ( , ))

( ) ( ) *

( , )* ( ) ( ) *

NB NB

i i

NL

j

Z f P i ug

PG i PD i Penalty

X j j PL j PL j Penalty

= =

=

=

+

 
− 

 
+

−

∑ ∑

∑

          (12) 

 

In the next section we present a simple case study in order 

to illustrate the feasibility and compatibility of the both LR and 

PSO DCOPF problem. 

IV. SIMULATION STUDIES 

In order to validate the LR and PSO DCOPF calculation, 

a simple three-bus test case, is considered here. The 

benchmark parameters are listed in Tables II and III.  

Demanded load at buses 1, 2 and 3, are 400MW, 300MW 

and 150MW, respectively. 

The system is slightly modified from the presented in fig. 

3 and will be used for the rest of this paper. The third 

generation unit is located at bus 3 for better illustration. It also 

should be noticed that the aforementioned incidence matrix is 

similar with the Table I. 

 
Table II. Line impedance and flow limits 

Line Number 1 2 3 

Connection 1-2 1-3 2-3 

R(pu) 0.00 0.00 0.00 

X(pu) 0.10 0.20 0.20 

Limit(MW) 1000 1000 1000 

 

 

Table III. Generation unit's data 

Unit Pmax Pmin a b c 

1.1 1000 0 0.012 20 400 

2.1 1000 0 0.010 10 200 

3.1 1000 0 0.015 12 150 

 

As it mentioned above, in LR method LMP at each bus 

would be available by calculating the locational dual variables 

of (7) at each bus. 

In PSO algorithm, the matrix 

1 2 3 2 3, , , ,iX PG PG PG δ δ=     and reference bus angle is set to 

zero. The violation penalty factor is 1E+10 and the PSO 

parameters are as follows: 

 

 

Table IV. PSO's Parameters 

PSO Parameters Value PSO Parameters Value 

No. Variables 3.00 Iteration 1000 

Variable min 0.00 Inertia Weight 1.000 

Variable max 1000 Damping Ratio 0.950 

Velocity max 50.0 C1 2.000 

No. Population 1000 C2 2.000 

 

The optimal power flow and economic load dispatch 

results are presented in table V. Simulation results show that 

the final results of both LR and PSO are identical. In order to 

illustrate the PSO could reach the best cost and parameter 

initialization set in an optimal fashion. Figure 4 shows the PSO 

trend. 
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Fig. 4. Optimal results of PSO in DCOPF (All cases reach the identical 

results) 

 
 

Table V. Generation unit's data 

Unit PG(MW) LMP($/MWh) Line PL(MW) 

1.1 27.780 20.667 1-2 -242.22 

2.1 533.33 20.667 1-3 -130.00 

3.1 288.89 20.667 2-3 -8.8900 

V. CONCLUSION 

The PSO and LR DCOPF which contain EDC are 

presented in this paper, are simple approaches to calculating 

the short-term operation. In LR which is based on the 

mathematical methodology, the LMP would be available but 

the convergence of this approach is not guaranty for large 

scale power system. In the other words, the PSO would 

overcome this challenge however it couldn't render the LMP. 

Simulation results also show that the presented method is both 

satisfactory and consistent with expectation. 
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