
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      5 

Machine Learning– Defect Prevention of                 

In-Appendage and Under Development Process of 

Quality Projects 
 

B. Dhanalaxmi 

Institute of Aeronautical Engineering College, India 

 

 
Abstract– Society has become increasingly dependent on software 

controlled systems (e.g., banking systems, nuclear power station 

control systems, and air traffic control systems).  These systems 

have been growing in complexity – the number of lines of source 

code in the Space Shuttle, for instance, is estimated to be 10 

million, and the number of lines of source code that will fly 

aboard Space Station Alpha has been estimated to be up to 100 

million. As we become more dependent on software systems, and 

as they grow more complex, it becomes necessary to develop new 

methods to ensure that the systems perform reliably. One 

important aspect of ensuring reliability is being able to measure 

and predict the system’s reliability accurately. The techniques 

currently being applied in the software industry are largely 

confined to the application of software reliability models during 

test.  These are statistical models that take as their input failure 

history data (i.e., time since last failure, or number of failures 

discovered in an interval), and produce estimates of system 

reliability and failure intensity. To better control a system’s 

quality, we need the ability to measure the system’s reliability 

prior to test, when it is possible to influence the development 

process and change the system’s structure. We develop a model 

for predicting the rate at which defects are inserted into a 

system, using measured changes in a system’s structure and 

development process as predictors, and show how to: (i) 

Estimate the number of residual defects in any module at any 

time and, (ii) Determine whether additional resources should be 

allocated to finding and repairing defects in a module. In order 

to calibrate the model and estimate the number of remaining 

defects in a system, it is necessary to accurately identify and 

count the number of defects that have been introduced into a 

system.  We develop a set of rules that can be used to count the 

number of defects that are present in the system, based on 

observed changes that have been made to the system as a result 

of repair actions. This paper identifies baseline procedures for 

verifying software for individual, small team, and large team 

development efforts for mission-critical and non-mission-critical 

software. It is based on defect-based inspections and basis path 

testing. Basis path testing provides a unified approach for 

performing unit, integration, and functional tests, whereas 

defect-based inspections are primarily used for verifying 

requirement and design documents. However, in situations 

where practitioners cannot afford to be as thorough as basis path 

testing permits, several heuristics are defined for prioritizing the 

remaining verification efforts and deciding which technique to 

apply. In addition, several studies are discussed that identify the 

relative merit of various verification techniques. 

 

Keywords– Software Quality, In-Appendage, Machine Learning and 

Defect-Tracking 

 

 

I.    INTRODUCTION 

uality of software is hectic in development, the rate of 

input produced per unit of quality output is considered as 

size. Software failures are costly to regarding the 

problems published regularly ranging from minor issues to the 

year 2000 thus a better understanding of software defects 

cause , the improvements in the areas of essential. Reliability 

of the software is an external attribute, the program has 

certain reliability from the user perspective and [6] internal 

attributes related to reliability are defects or faults. 

Quality of the software is required, and not maintained 

how it effects the over all costs, we have so many tools and 

automated techniques have to take development make testing 

process with more efficient. A wide variety of proposed 

solutions the fundamental challenge of testing revealing other 

defects in freshly developed process or after major 

modifications.  

While test automation is becoming increasingly popular 

approaches like Test-Driven Development and eXtreme 

Programming, empirical research shows that companies 

typically perform very little automated testing and most new 

defects are found by manual testing. The role of automation is 

emphasized in regression testing and it is best viewed as a 

way of removing the enactment of simple and repetitive tasks 

from human testers in order to free up time for creative 

manual testing. Interestingly, manual testing and especially 

test execution practices have been fairly little studied in the 

software engineering community. Testing research has 

focused on techniques for test case design, selection and  

 

 
 

Fig. 1: Represents the Quality of Software cost of Attributes 
 

Q



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      6 

prioritization, as well as on optimizing automated testing. 

However, we do not know, i.e., what factors affect the 

efficiency of manual testing, and how, or what practices 

industrial testers find useful. Previous research shows that 

aspects such as testers’ skills and the type of the software 

have as strong an effect on test execution results as the test 

case design techniques. Software organizations today rarely 

meeting the high quality of attributes, to compensate for this 

lack of quality past research proposed four common [1] 

approaches to improving it.  

One approach is to hire the best and effective personnel, 

although seldom is the criteria for selecting such people ever 

defined. Another way is to reuse software instead of 

developing it a novel. Unfortunately, few organizations have 

been able to develop general, reliable software that can be 

reused without significant modification. Yet another scheme 

is to develop software at higher levels of abstractions. 

However, it is still rare to convince others of the wisdom of 

this approach in light of anticipated system performance 

penalties. Therefore, the final approach is the one most 

commonly followed. It advocates the adoption of improved 

software processes that reduce the number of defects and the 

variability of them over time. 

II.    SURVEY OF DEFECT TECHNIQUES 

To avoid each and every problem in development 

implanting such a thing means the system is too complex due 

to that here is the process defect prevention were focused on 

defect prediction and decide upon the team size of the testing 

resources required in order to complete the project on time 

and lot of effort were utilized in the debugging and get the 

defects eliminated with the advent of SDLC (System 

Development Life Cycle) processes many companies 

formulated their own defect prevention mechanisms and many 

studies were conducted towards defect prediction and  

prevention. The main modes of the defects would be Defect 

Origin, Types and Modes and how analysis of defects found 

in first iteration can provide feedback for defect prevention in 

later iterations, leading to quality and productivity 

improvement [2]. All the above methodologies lacked some 

dimension in the defect prevention process and needed more 

attention. In this study, we propose to combine the above 

methodologies used such as Iteration defect reduction, 

capturing defects at early stage and finding out defect 

prevention for better classified type of defects and have 

attempted to come out with a defect prevention cycle for 

continuous improvement of the Quality Processes and Defect 

Prevention. 

A. Quality Prevention for Development Software 

Important activity in any software project is bug 

prevention process. In most software organizations the project 

team focuses on defect detection and rework. Thus, defect 

prevention, often becomes a neglected component. It is 

therefore advisable to make measures that prevent the defect 

from being introduced in the product right from early stages 

of the project. While the cost of such measures are the 

minimal, the benefits derived due to overall cost saving are 

significantly higher compared to cost of fixing the defect at 

later stage. Thus analysis of the defects at early stages reduces 

the time, cost and the resources required. The knowledge of 

defect injecting methods and processes enable the defect 

prevention. Once this knowledge is practiced the quality is 

improved also enhances the total productivity. 

Our work describes the approaches in predicting the 

number of defects to be discovered for a software product, 

particularly for software testing phase. It presents the 

overview of various techniques and models in predicting 

software defects across Software Development Life Cycle 

(SDLC). It then focuses on strategies in estimating defects for 

software testing phase using various models. Next, it 

describes the application and use of defect estimation with 

regard to software process improvement and software quality. 

Several critiques on defect prediction model are also 

presented. Finally, this paper illustrates the proposed model in 

predicting and estimating defects for software testing phase. 

And the approaches of defect prediction throughout Software 

Development Life Cycle (SDLC) are also explained. It 

consists of perspectives of defect and defect prediction, 

approaches and techniques of defect prediction as well as 

relationship of defect prediction with reliability. 

As defect becomes the main focus of defect prediction, 

we should be able to distinguish between different defect 

severities, either major or minor defects. Minor should not be 

taken into considerations as it will inflate the estimation of 

product defects. From the observations done, most defect 

prediction depends on historical data. Furthermore, the 

techniques used to predict defect vary especially in term of 

data required (Clark and Zubrow, 2001). Prediction of defect 

can require little or more data. It also can rely on some work 

product characteristics or only use defect data. These 

differences in the quality of inputs used for predicting defects 

will determine the strengths and [3] weaknesses of a particular 

defect prediction. To start off with estimating defects, we 

must first aware on how defects are detected and generated. 

The purpose of understanding the defect detection is to 

identify the sources of defect or how defects are discovered. 

Defects can be detected either from verification and validation 

process or post-deployment.  

 

 

 
 

Fig. 2: Techniques of software Quality 

 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      7 

Fig. 2 above summarizes the defect detection techniques 

as outlined in the studies by Clark and Zubrow. In general, 

defect prediction deals with estimating number of defects or 

faults. Defect prediction is usually used interchangeably with 

other terms such as defect estimation, fault prediction or fault 

estimation. Having the defect prediction helps in estimating 

the quality of software before being released and used by the 

users. The before analysis is required  from three areas: 

predicting the number of defects in a system, estimating the 

reliability of systems in terms of time to failure, and 

understanding the impact of design and testing process on 

defect counts and defect densities. This defect prediction is 

expressed in a form of equations describing the defect inflow 

as a function of other selected measurements such as 

milestone completion status or lines of code (LOC), either 

from a short-term or long-term standpoint (Staron and 

Meding, 2007). Both standpoints help in monitoring the 

project status and project progress in developing software. 

III.   APPROACHES AND TECHNIQUES OF DEFECT 

PREDICTION 

Various approaches and techniques have been formulated 

and applied in predicting number of defects throughout the 

entire SDLC. The techniques or approaches which are 

presented in a form of model or equation are developed 

according to several sources and metrics. Neil and Fenton 

(1999) presented their findings on how defects are predicted. 

(i) First approach is prediction by using size and 

complexity metrics, in which it predicts defects directly based 

on program code, mostly towards lines of code and McCabe’s 

Cyclomatic complexity. According to them, a study by 

Akiyama of Fujitsu, Japan showed that linear models of some 

simple metrics provide reasonable estimates for the total 

number of defects. From the four equations computed by him, 

one of them involves equation on lines of code (LOC) as 

below:  

Defect (D) = 4.86 + 0.018 Lines of Code (L) 

They added on the argument by Gaffney that stated 

relationship between Defect (D) and Lines of Code (L) was 

not language dependent due to optimal size for individual 

modules with regard to defect. Lipow’s data is used for the 

prediction:    

D = 4.2 + 0.0015 L4/3 

Further analysis was then conducted by Compton and 

Withrow who derived the polynomial equation, in which they 

concluded that the optimum size for an Ada module is 83 

source statements with respect to minimizing error density. 

The equation is as below: 

D = 0.069 + 0.00156 L + 0.00000047 L2 

 

(ii) Second approach as outlined by Neil and Fenton is 

predicting defects using Function Point (FP). It is a measure 

of number of functionality in requirements for particular 

software. This [3] Albrecth Function Point describes defect 

density prediction by using metric extracted at specification 

stage due to believe function point-based metric is better than 

lines of code and is language independent. 

(iii) Testing metrics is another approach given by Neil 

and Fenton for predicting defects. This Testing metrics is 

another approach given by Neil and Fenton for predicting 

defects. This involves careful collection of data on defects 

found during inspection and testing phases. Test coverage 

measure is one of the testing [4] metrics used to predict defect 

via structural testing strategy. The resulting metric is called 

Test Effectiveness Ratio (TER) that covers either statement 

coverage, branch coverage or Linear Code Sequence and 

Jump coverage. Examples of how defects are found based on 

testing metrics is presented below: 

 

 
 

Fig. 3: A Defects based on testing metrics 

 

Finally in their findings, Neil and Fenton described the 

usage of process quality data to predict the defects of 

software. This was expressed through the SEI Capability 

Maturity Model (CMM) ranking. The table below outlines the 

relationship between CMM levels and delivered defects. 

 

 
 

Fig. 4: Relationship between CMM levels and delivered defects 
 

For large software projects, studies by Staron and Meding 

have produced two types of prediction model which is defect 

inflow prediction (2007). One model is for short-term defect 

inflow prediction and another is for long-term defect inflow 

prediction. Historical data from the defect inflow trends and 

project plans is used to construct the short-term prediction 

model. From the data, multivariate linear regression 

prediction model is created, which then is applied in new 

projects to predict number of defects for a particular week. 

This multivariate regression model for short-term prediction 

is represented as an equation based on several independent 

variables as below: 

 

From the equation, values for ‘a’ is the coefficient 

calculated using statistical regression while method while ‘x’ 

is the independent variable. Based on the short-term 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      8 

prediction model, project team members can predict the 

number of inflow defects to be found in future week of the 

project execution.  

Software Engineering Institute (SEI) of Carnegie Mellon 

University also conducted a study of the level of goodness for 

particular software. That study by Clark and Zubrow [4] 

emphasized on techniques in defect prediction. They 

categorized defect prediction techniques into three areas: 

project management, work product assessment and process 

improvement. Project management covers prediction 

techniques such as empirical defect prediction, defect 

discovery profile, COQUALMO and orthogonal defect 

classification. For work product assessment area, it involves 

fault proneness evaluation and capture/recapture analysis. As 

for process improvement area, defect prevention and 

statistical process control techniques are used. 

 

 
 

Fig. 5: Testing phase diagram 

  

A. Defect Prediction in Testing Phase of Software 

Development Life Cycle 

Approaches used in the previous findings of defect 

prediction mostly covered the potential number of defects to 

be found for all phases in Software Development Life Cycle 

but no specific prediction techniques explained for Testing 

phase. Although there are some techniques mentioned about 

defects to be found in System Test phase but the findings also 

take into account the defects to be found prior to and after 

System Test phase. The main intention is to understand more 

on the prediction techniques of defects to be found 

specifically for software testing phase of SDLC. Bertolino 

and Marchetti (2003) introduced a simple model called Bemar 

model. This model is used to predict the expected number of 

remaining failures in early test phases. It is quite simple since 

it predicts number of defects based on intervals of time 

between subsequent failures. The model is represented as 

below: 

 

NFKIS the number of failures for k test intervals, NFTI, k 

is the number of failures test intervals based on test 

information collected during k test intervals, and EK [F] is the 

expectation of failures for k intervals. This Bemar model has 

been applied for functional testing and also operational test 

data. From the results, they concluded that the model assumes 

defects [5] detected are distributed over the whole test period. 

They also suggested that the model works well to complement 

reliability growth models. In the case study conducted at Sun 

Microsystems, Karcich, Cangussu and Earl proposed a state 

variable model called as the CDM Model (2003). CDM came 

from the developers’ name of the state variable model for 

their Software Test Process: Cangussu, DeCarlo and Mathur. 

Besides using the model to control the test process using 

failure intensity as the control variable, the CDM model is 

also used to calculate the estimated number of total remaining 

defects.  

B. Building Defect Prediction in Practice 

It is very crucial to ensure the process of collecting data 

for predicting the defects is proper and accurate, so that the 

data that we used for analysis is correct. Generally, most of 

studies follow these steps or guidelines to statistically coming 

out with estimated defects: 

1. Identify parameters or factors that have impact to defect 

injection in a software product. 

2. Gather defect data for past projects in terms of total 

number of defects detected. 

3. Analyze the correlation patterns between the parameters 

and the total defects found in past projects. 

4. Estimate independent parameters for new project 

5. Use Linear Regression to estimate total number of 

defects that may get injected based on the estimated 

independent parameters 

6. Calculate the total number of latent defects. 

7. Calculate efficiency required by project. 

8. Calculate estimated defect rate for each period using 

Rayleigh Distribution. 

9. Calculate estimated defect injection rate by phase based 

on project schedule. 

10. Plot the S-shaped curve for defect detection pattern. 

11. Compare Rayleigh curve and actual data to get 

quantitative estimate 

      The processes of developing prediction model based 

on Regression Analysis are as follows: 

1. Gather data on given independent variables and 

correspondent dependent variables 

2. Determine the form of equation to fit by plotting the 

dependent and independent data sets on a special graph such 

as scatter plot to shows the existence of statistical relationship 

3. Fit an equation depending on number of independent 

variables either simple or multiple regression  

4. Evaluate the fit using statistics such as Coefficient of 

Determination (R) or Standard Error of Estimate (SE) 

C. Application of Defect Prediction 

Defect prediction is used for various purposes throughout 

Software Development Life Cycle (SDLC). This is described 

in the Process Performance Model in which defect prediction 

model is one of the importance contributors. Process 

Performance Model predicts the effort, number or defect and 

other related data based on parameters such as schedule and 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      9 

size. One of the items in the quality planning is outlined by 

the experts with regard to process performance is to control 

number in User Acceptance Testing (UAT) phase. For this, it 

starts with predicting the total number of defects using defect 

prediction model, which then being adjusted according to 

project parameters such as customer quality goals, past data 

from similar project and type of development methodology 

used. Then, the defects are distributed amongst the phases in 

software life cycle.  

Next, these distributed defects are adjusted for three 

things: to distribute defects early in the life cycle to achieve 

zero defects at acceptance phase, to distribute the remaining 

defects in other phases as per project scope and also to be 

used for verification and validation strategy which involves 

use of various type of test strategy to tackle more defects. 

From the result, project team should be able to derive several 

measures such as defect per function point per phase, defects 

per person month and also review effectiveness. The data will 

then be recorded and tracked. Defect prediction is also used to 

determine the reliability of software. This is because defect 

prediction is also part of the software reliability model. 

Software reliability model aims to estimate the reliability of 

the latent defects of software, especially when it is available 

to customers. The defects estimated across the SDLC provide 

a basis for describing the probability of the software operating 

in a given environment within the design range of input 

without failure.  

Rayleigh Model is chosen to be the suitable software 

reliability model as it predicts the expected value of defect 

density at different stages of life cycle of the project. The 

equation presented in the Rayleigh Model is used to predict 

the number of defects over time. In order to determine the 

accuracy of the duration and magnitude of this Rayleigh 

Model, specific inputs must be selected. Having good inputs 

to the model allows accurate forecast for a specified scenario. 

Three main factors of the model are mentioned in several 

studies: source lines of code in a form of size required to build 

the software functionality, productivity index in a form of 

product efficiency and complexity as well as peak staffing in 

terms of human effort required to build and test the software. 

The measurement of total defects likely to be occurred 

from the software being constructed is represented by the area 

bounded by the x-axis and the curve as depicted in the figure 

below: 

 

 
 

Fig. 6: Graphical representation of Rayleigh model parameters 
 

From the above figure, an equation of Probability Density 

Function (PDF) is produced, which is F (t) = f (K, tm, t). K 

denotes cumulative defect density, tm represents actual time 

unit while t is the time at the peak of the curve. Good software 

maintenance also depends on good prediction model. 

Selecting good defect prediction model is important for 

pricing maintenance contracts and insurance (Li, Shaw and 

Herbsleb, 2003). It also helps in predicting support costs for 

software including maintenance staffing. Defect prediction 

model helps in planning the maintenance activities and timing 

for resolving reported defects. This is because a good model 

should be able to simulate occurrences of similar defects in 

the field. The essential thing to consider here is the different 

type of operational setting in which the model is applied to. 

The model should be able to work in environment of user-

reported defects, widely-used systems, multi-release systems 

or commercial systems so that suitable maintenance activities 

can be adopted. 

D.   Enhancement to Defect Prediction 

One approach to enhance the defect prediction is by using 

the process metrics. Process metrics or process data covers the 

data that is gathered in and by the problem tracking system 

and the configuration management system (Kaszycki, 1999). 

The data can be in a form of number of changes since last 

release, number of faults found since last release, number of 

different developers who turned over, versions of this module 

since last release or number of features that were added that 

affected this module. By using process metrics, it contributes 

to developing a higher accuracy of defect prediction model as 

well as helps in earlier detection of defect in the development 

process. Figures 7 and 8 below depict the differences between 

prediction without process metrics and prediction with 

metrics. 
 

 
 

Fig. 7: Prediction without process metrics 

 

 

 
 

Fig. 8: Prediction with process metrics 
 

Another approach to the enhanced defect prediction is 

through advanced model. 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      10 

This is achieved via phase level Bayesian Networks (BN) for 

defect prediction. The objective is to predict defects and 

defect rates at different periods across software development 

project based on information available at any stage of 

development and testing (Neil, 2006). This advanced model 

takes into account several things: how big the software is, 

how good the development process is, how good the testing 

process is and also chances of successfully of removing 

defects. 

E. MIMOS Software Production Process 

MIMOS is a Software company which achieved the 

Level 4 CMMi(industry practice) compliance. As presented in 

Figure 9 below, testing team involves in all review session for 

each phase, starting from planning until end of system testing 

phase throughout the software production process. Test 

engineers involve in reviewing planning document, 

requirement analysis document, design document, test 

planning document and test cases. The software production 

process is governed by project management, quality 

management, configuration and change management, integral 

and support as well as process improvement initiatives, which 

CMMi. From Figure 9, the area of study is the functional or 

system test phase. In order to perform further analysis and 

establish defect prediction model for system test phase, faults 

and errors captured in previous phases prior to testing phase 

must be considered and investigated. 

 

 
 

Fig. 9: MIMOS software production process 

  

Technically, in building the defect prediction model, it is 

observed that many factors contribute to the defect discovery 

in testing phase. Obviously, faults in requirement, design and 

coding as well as in-process faults have their own relationship 

with defects. Code size in a form of kilo lines of code also 

affects the number of defects found in testing phase. By 

extracting the correct data from right sources, we will be able 

to conduct proper and detailed analysis on the identified 

factors while at the same time, proves that all factors must be 

considered in predicting defects for testing phase. The 

research shows that defect prediction model provides strong 

contribution to zero-known post release defects of particular 

software product since testing is the last gate in the process 

before the software can be said as fit for release and use. Test 

engineers will discover as many defects as possible to ensure 

all defects are contained within the testing phase and not 

escaping to the end-user. Additionally, having a predicted 

number of defects allows for better resource utilization of test 

engineers for a project by allocating appropriate number of 

testers to test the software.  

Better test strategy and wider test coverage could be 

implemented by having predicted number of defects. This can 

be achieved practically since every test engineer will be aware 

of the potential defects that they will discover. The tolerance 

of 10% lesser or 10% greater of actual defects found against 

the estimated defects could be their guide in testing the 

software product. Indirectly, having estimated number of 

defects in testing phase promotes the initiatives of the whole 

software development process, especially in ensuring stability 

of development effort in releasing a software product. 

IV.   PROBLEM DEFINITION 

In software Development the phase Testing is a executing 

program which discovers the error, defect, bugs. Preparing 

test-cases gathering requirements then apply the test manually 

or automated approach again the process becomes 

development, to avoid these process we propose a In-

appendage which is invention of effective action based defect 

detection & Prevention Technique under development 

process. 

In-Appendage is solution to find the defects in 

development phase which usually reduces the time and risk. 

In Development life cycle project suppose we have eight 

modules then other module is the appendage, ninth module 

appendage discovers the defects or bugs in before modules 

using machine learning techniques in Data mining. 

A. Work Flow Stages 

(i) Defect Identification: Defects are found by preplanned 

activities specifically intended to uncover defects. In general, 

defects are identified at various stages of software life cycle 

through activities like Design review, Code Inspection, GUI 

review, function and unit testing. Once defects are identified 

they are then classified using first level of Orthogonal Defect 

Classification. 

(ii) Defect Classification: Orthogonal Defect 

Classification (ODC) is the most prevailing technique for 

identifying defects wherein defects are grouped into types 

rather than considered independently. ODC classifies defect at 

two different points in time Time when the defect was first 

detected – Opener Section Time when the defect got fixed – 

Closer Section ODC methodology classifies each defect into 

orthogonal (mutually exclusive) attributes some technical and 

some managerial. These attributes provide all the information 

to be able to shift through the enormous volume of data and 

arrive at patterns on which root-cause analysis can be done. 

This coupled with good action planning and tracking can 

achieve high degree of defect reduction and cross learning. 

 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      11 

 
 

Fig. 10: Process Improvement Work flow 

 

For small and medium projects, in order to save time and 

effort, the defects can be classified up to first level of ODC 

while critical projects typically large projects needs the 

defects to be classified deeply in order to get analyze and 

understand defects. In this paper, the project that is selected 

for analysis being a project coming under the category of 

small and medium size project, the analysis of defect is done 

by using first level of ODC defect classification. First level of 

ODC includes classifying the defects under various defect 

types like Requirements, Design, Logical (Logical defects are 

found by testing the [7] code using functional/unit testing), 

and Documentation. Defects are classified under these types 

and then analysis of defects is carried out. 

B. Defect Analysis 

Defect Analysis is using defects as data for continuous 

quality improvement. Defect analysis generally seeks to 

classify defects into categories and identify possible causes in 

order to direct process improvement efforts. Root Cause 

Analysis (RCA) has played useful roles in the analysis of 

software defects. The goal of RCA is to identify the root 

cause of defects and initiate actions so that the source of 

defects is eliminated. To do so, defects are analyzed, one at a 

time. The analysis is qualitative [8] and only limited by the 

range of human investigative capabilities. The qualitative 

analysis provides feedback to the developers that eventually 

improve both the quality and the productivity of the software 

organization. 

 Defect Prevention: Defect prevention is an important 

activity in any software project. The purpose of Defect 

Prevention is to identify the cause of defects and prevent them 

from recurring. Defect Prevention involves analyzing defects 

that were encountered in the past and taking specific actions 

to prevent the occurrence of those types of defects in the 

future. Defect Prevention can be applied to one or more 

phases of the software lifecycle to improve software process 

quality. 

 

 
 

 

Fig. 11:  Defect Prevention in Software Lifecycle 
 

Process Improvement: The suggested preventive actions 

are implemented by rewriting the existing quality manuals 

and tweaking the SDLC processes and come out with a 

improved SDLC processes and documents. Next set of 

projects follow the revised quality processes there by 

effectively all the preventive actions are followed 

meticulously. 

C. Project Defect Data 

Information like number of lines of code (KLOC) 

produced by the software, number of defects and the number 

of man hours spent in the project are collected in order to 

know the defect data in the project. Defect density is a 

measure of the total number of defects in a project divided by 

the size of the software being measured. 

Defect Density (DD) = Number of defects / size (kloc) –  

Defect density is calculated to track the impact of defect 

reduction and to judge the quality improvement on the project 

that has implemented defect preventive action with the project 

that did 

Defect Pareto Chart: After defects are logged and 

documented, the next step is to review and analyze them 

using root cause analysis techniques. Before root cause 

analysis is being carried out, A Pareto chart is prepared to 

show the defect type with the highest frequency of occurrence 

of defects – the target. 

Root Cause Analysis: Root-cause analysis is the process 

of finding the activity or process which causes the defects and 

find out ways of eliminating or reducing the effect of that by 

providing remedial measures. The root cause analysis of a 

defect is driven by two key principles: Reducing the defects to 

improve the quality: The analysis should lead to 

implementing changes in processes that help prevent defects 

in the formation stage itself and ensure their early detection in 

case it is re-occurring. 

Utilizing local and third party expertise: The people who 

really understand what went wrong should be present to 

analyze processes prevalent in that organization along with 

third party experts. A healthy debate ensures all possibilities 

are reviewed, analyzed and the best possible actions are 

arrived by consensus [5]. With these guidelines, defects are 

analyzed to determine their origins. A collection of such 

causes will help in doing the root cause analysis. One of the 

tools used to facilitate root cause analysis is a simple 

graphical technique called cause-and-effect diagram/ fishbone 

diagram which is drawn for sorting and relating factors that 

contribute to a given situation. 

Preventive Action: A standard brainstorming procedure 

was followed to do root cause analysis. First all the possible 

causes were identified from the cause-and-effect diagram and 

debated among the team and all suggestions were listed, then 

the ones that were identified as the main reasons for causes 

were separated out. For these causes, possible preventive 

actions were discussed and finally agreed among project team 

members 

D. A Model for the Rate of Defect Insertion 

We propose to model the rate at which defects are 

inserted into a software system. In general, we will model the 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012 

[ISSN: 2045-7057]                                                                                       www.ijmse.org                                                                                      12 

rate as functions of the measured structural change in a 

software system over any given development increment and 

the measured changes in the development process over that 

same increment, given by ix = f x (Dsx, Dd x), where ix is the 

rates at which defects are inserted and deleted when x defects 

are already in the system, and f x ( sx d x) D ,D is a function of 

the measured structural change, Dsx , and [8] the measured 

development process change, Dd x , over a development 

increment at the start of which x defects were in the system. 

The function f x ( sx d x) D ,D is not required to be 

constrained to any particular form, and may indeed vary from 

development phase to development phase within a software 

development effort.  

However, previous work by experts shows that during the 

implementation phase, the correlation of measurements of 

system structure (but not structural change) and the system’s 

defect content is 0.90, and that the relationship between 

measurements of system structure and the defect content is 

linear. For the implementation phase, then, we will take as our 

starting point the hypothesis that the rate of fault insertion is 

linearly related to the measured structural change and 

development process change during a development increment: 

ix = k xDsx + k x Dd x 0, 1, where Dsx and Dd x are as defined 

above, and k0,x and k1,x are constants relating the measured 

structural and development process change to the rates of 

defect insertion and removal at the start of a development 

increment in which the system contains x defects. In the 

simplest case, the constants k0,x and k1,x would be the same 

for all values of x. 

Furthermore, if the development process were to remain 

constant across a particular development phase, the term for 

the effects of change to the development process, k1,x Dd x , 

would assume a value of 0. The effects of the [9] development 

process would be taken into account in the constants k0,x . 

This would make it particularly simple to estimate the number 

of defects in the system at any given time. If, on the other 

hand, the rate at which defects were inserted into the system 

were to vary with the number of defects already in the system, 

estimating the number of defects in the system at any time 

would be more complicated.  

V.   CONCLUSION 

From the above discussion, we draw several conclusions 

with regard to new approach of defect prediction model for 

software testing phase in SDLC. First, it is important to set 

the clear objective of what the proposed model need to 

achieve when it is implemented in real software development 

operations, which is to be able to estimate total number of 

defects to be discovered in software testing phase. Getting 

started with sample technique will do. Second, identification 

and collection of appropriate factors data that has strong 

significance with defect need is very essential in defect 

prediction by following proper steps or processes, especially 

historical data.  Whatever data that is available in place 

could help in determining the suitable prediction technique. 

This is because the historical data may drive the model 

selection. This bring to third conclusion in which the 

statistical relationship between the factors and defects must be 

established in coming out with the model to determine the 

correlation between those parameters. Instead of just focusing 

on fixing defects, analysis on the patterns against defects can 

be carried out. 

Fourth, verification of the model, in which in a form of 

equation, must be performed to ensure the model works and 

suitable with the internal software production process. 

Implementation of defect preventive action not only helps to 

give a quality project, but it is also a valuable investment. 

Defect prevention practices enhance the ability of software 

developers to learn from those errors and, more importantly, 

learn from the mistakes of others. The benefits of adopting 

defect prevention strategy would be enormous and to list a 

few, Defect prevention reduces development time and cost, 

increases customer satisfaction, reduces rework effort, thereby 

decreases cost and improves product quality. This paper 

confirms to implementation of first level of Orthogonal 

Defect Classification (ODC) for defect classification. To gain 

a deeper understanding about the defect, the defects are to be 

classified by implementing ODC to next level. Analysis of 

ODC classified data helps in getting better defect preventive 

ideas that would further improve the software quality process. 

REFERENCES 

[1] Clark, B. and Zubrow, D. (2001). How Good is the Software: 

A Review of Defect Prediction Techniques. Software 

Engineering Symposium. Carnegie Mellon University. 

[2] Fenton, N.E. and Neil, M. (1999). A Critique of Software 

Defect Prediction Models. IEEE Transactions On Software 

Engineering. Volume 25, No.5.  

[3] Grottke, M. and Dussa-Zieger, K (2001). Prediction of 

Software Failures Based on Systematic Testing. Ninth 

European Conference on Software Testing Analysis and 

Review. Stockholm. 

[4] Mohanty, B. and Mohapatra, S. (2001). Defect Prevention 

Through Defect Prediction: A Case Study at Infosys. 

Proceedings of IEEE International Conference on Software 

Maintenance. 

[5] Nayak, V. and Naidya, D. (2003). Defect Estimation 

Strategies. Patni ComputerSystems Liited. Mumbai. 

[6] Neuendorf, S. (2004). Prediction of Software Defects. 

SASQAG 2004. 

[7] Ostrand, J.T. and Weyuker, E.J. (2007). How to Measure 

Success of Fault Prediction Models. SOQUA ‘07. 25-30. 

[8] Ostrand, T.J., Weyuker, E.J., Bell, R.M. and Ostrand, R.C. 

(2005). A Different View of Fault Prediction. Proceedings of 

the 29th Annual International Computer Software and 

Applications Conference (COMPSAC ’05). 

[9] Rana, Z.A., Shamail, S. and Awais, M.M. (2008). Towards a 

Generic Model for Software Quality Prediction. WoSQ ’08. 

Leipziq. 

[10] Thangarajan, M. and Biswas, B. (2002). Software Reliability 

Prediction Model. Tata Elxsi Whitepaper. 

 

 
B. Dhanalaxmi M.Tech Software Engineering 

from Gurunank College of Engineering. 

Currently she is Asst Prof at Institute of 

Aeronautical Engineering College, has guided 

many UG & PG students. Her areas of research 

include Software Engineering , Quality Testing, 

Software Project Management Network 

Security. 


