
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012

[ISSN: 2045-7057] www.ijmse.org 40

Object Oriented Model for Ontology Engineering

Afzal Ahmad, Amjad Farooq and Yasir Saleem

Department of Computer Science and Engineering, U.E.T., Lahore, Pakistan

Abstract– Ontology engineering gets vital importance after the

idea of semantic web. The huge amount of data on current web

makes information retrieval most difficult and complex process.

This problem brings the idea of semantic web in which data will

be in a structured form so that machine can understand and

integrate data from different sources to retrieve required

information for the end user. Ontology makes this possible to

have data in structured form, so success of semantic web heavily

depends on the successful development of ontology. Ontology

development from scratch is most difficult and time taking

process. So there is need to use existing, mature and accepted

object oriented models of software engineering for development

of ontology. This will reduce effort and time because

constructing complex ontology required lot of effort, time and

expertise in knowledge engineering. This paper investigates the

development of ontology from object oriented models.

Keywords– Semantic Web, Ontology Engineering, Object Oriented

Paradigm and Class Diagram

I. INTRODUCTION

Today’s web contains huge amount of data but

machines cannot understand, process and integrate this

huge amount of data into useful information required by

humans. The reason why machines are not able to understand

data is that it is not structured semantically on the web.

The idea of semantic web is that the data on the web is

structured in some form so that machines are able to

understand and integrate data in useful information. But the

success of semantic web heavily dependent on ontologies that

will make the unstructured data on current web in a structural

and meaningful form. Ontologies make machines able to

comprehend and integrate data on behalf of humans. So the

success of semantic web is not possible without ontologies

[6], [15].

Ontology engineering is a field which studies method and

techniques for developing ontologies. Developing ontologies

from scratch is difficult and time consuming process. The

structure of ontology is very similar to the structure of class

diagram in object oriented design [1], [4]. These structure

similarities can be fruitful for developing ontology from class

diagram with less effort and time. This paper will discuss and

proposed a method to transform class diagram to ontology.

II. RELATED WORK

There are many similarities between class diagram

structure and ontology structure. Both ontology and class

diagram contain classes and different types of relationship

between classes [2].

There are the similarities and differences between

ontology development languages and object oriented

languages. Classes are regarded as type of instances in object

oriented design and as set of individuals in ontology

development languages. Compilers are used at built time and

compilers errors are regarded as problems in object oriented

and reasoners are used to check consistency in ontology

development languages. Classes in objected oriented design

can declared their members as private but on the other

everything is public in ontology development languages [9],

[11], [12].

The UML class diagram is mapped to DAML+OIL

ontology using the mapping [13] as listed in Table 1.

Table 1: Mapping Rules

UML DAML+OIL

Package Ontology

Class Class

Attributes DatatypeProperty

Generalization/sp

ecialization

subClassOf/subPropertyOf

Association Object Property

The UML can be used to developed ontology because of

similar structure of class diagram and ontology. The UML is

open standard and widely adopted by industry and taught in

universities but on the other hand ontology development

requires expertise of knowledge engineering [14], [15].

III. CLASS DIAGRAM

In object oriented design, a class diagram is a hierarchy

of entities of a domain of interest. Each entity in a class

diagram is represented as a class. A class contains attributes

and method. Attributes are the properties of an entity and

method represent functions of an entity. A class in class in

object oriented design can contain any number of objects and

each object of class is known as single instance of that class.

The elements of class diagram are classes containing

attributes and methods and relationships such as association,

generalization, aggregation, composition, dependency and

realization. The class diagram can be defined as [7], [10].

D = {C, R}

Here, C is the set of classes and R is the set of relationships

in class diagram. The set C can be defined as

C= {ci (cn, A, M) | i=1, 2, 3….N}

T

Junaid
Typewritten Text

Junaid
Typewritten Text
 and Asim Remat

Junaid
Typewritten Text

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012

[ISSN: 2045-7057] www.ijmse.org 41

Here, cn is the name of class, A is the set of attributes and

M is the set of method of class ci. The set A can be defined

as

A= {ai (an, b) |i=1, 2, 3….N}

Here, the an is the name of attribute and b is the data type of

it.

The set R can be defined as

R={ri(ci,cj,RT,m(m1,m2),r(r1,r2)),ci<->cj }

RT= {association, aggregation, composition, generalization,

dependency, realization}

Here, RT is set of relationship, m (m1, m2) is the multiplicity

and r (r1, r2) is the roles of association between two ci and cj.

The ci<->cj defines that relationship is unidirectional or

bidirectional. Association relationship is normally two way

relationship.

IV. ONTOLOGY

Ontology is not simply taxonomy, which just classify

data in a domain. Ontology contains taxonomy as a

component. So ontology is partially taxonomy. Taxonomy

only categorizes things and nothing more but on the other

hand ontology categorizes things in the form of taxonomy as

well as defines richer relationships between different concepts

of hierarchy [3], [5].

The elements of ontology are classes with attributes,

individuals, relationships, functions and axioms. The

functions and axioms are constraint on relationships. The

ontology can be defined as:

O= (C, R, I)

C= {ci (cn, A) | i=1, 2, 3….N}

A= {ai (an, b) |i=1, 2, 3….N}

R={ri(ci,cj,RT,m(m1,m2),r(r1,r2),ci<->cj) }

RT= {is-a, has-a, non-taxonomic}

 Here, in set C, cn is the name, A is the set of attributes

and M is the set of methods of class ci. In set A, a is the name

and b is the data type of attribute ai. In set R, ci and cj are two

classes, RT is a set of relationships, m1 represent multiplicity

of ci to cj and m2 of cj to ci, r1 represent the role on ci side

and r2 on cj side and the ci<->cj represent the direction of

relationship ri.

V. PROPOSED TRANSFORMATION

The class diagram can be transformed to ontology by

using the simple proposed transformation. The proposed

transformation is

Fig. 1: Formal Representation of Rule 1

Rule 1: All classes in a class diagram will become the

classes or concepts of ontology as well as attributes of classes.

This rule is formally represented in Fig. 1.

Rule 2: All relationship in class diagram will transform

to three types of relationships in ontology. This rule is

formally represented in Fig. 2.

Fig. 2: Formal Representation of Rule 2

Rule 3: All instances of class will become individuals of

ontology classes. By using above transformation, steps to

develop ontology form class diagram are as follows [8]:

i. Define all class in class diagram using owl: class in

ontology.

ii. Define attributes of each class using owl: DataProperty,

owl: domain and owl: range in ontology.

iii. Define relationships between classes using owl:

ObjectProperty, owl: domain, owl: range, owl:

Restriction and owl: Cardinality in ontology.

Object of classes will be defines as individuals of classes in

ontology.

A. Case Study: Order Processing

Order processing system class is taken as an example to

apply proposed transformed. The class diagram for order

processing system is given below:

Fig. 3: Order Processing Class Diagram

The above order processing class diagram can be

represented in the form of set of classes and relationship as

DPurchaseOrder = (C, R) where,

C = Set of all classes in purchase order class diagram

R = Set of all relationship exist in purchase order class

diagram:

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012

[ISSN: 2045-7057] www.ijmse.org 42

 C= {c1 (Order, AOrder),

 c2 (OrderItem, AOrderItem),

 c3 (CatalogItem, ACatalogItem),

 c4 (Catalog, ACatalog),

 c5 (Employee, AEmployee),

 c6 (Customer, ACustomer),

 c7 (Address, AAddress),

 c8 (PaymentMethod, APaymentMethod),

 c9 (MoneyOrder, AMoneyOrder),

 c10 (Check, ACheck),

 c11 (DebitCard, ADebitCard),

 c12 (Product, AProduct)}

AOrder = {a1 (OrderNumer, String)}

AOrderItem = {a1 (ItemPrice, Currency), a2 (ItemTotal,

Currency), a3 (Quantity, Integer)}

ACatalogItem = {a1 (CatalogNumber, String), a2 (Description,

String), a3 (Price, Currency)}

ACatalog = {a1 (EffectiveDate, Date), a2 (Expiration, Date), a3

(Identifier, String)}

AEmployee = {a1 (FirstName, String), a2 (LastName, String)}

ACustomer = {a1 (CustomerCode, String), a2 (Name, String)}

AAddress = {a1 (City, String), a2 (Country, String), a3

(PostalCode, String), a4 (State, String), a5 (StateAddress,

String)}

APaymentMethod = {a1 (Amount, Currency), a2 (IsPaid,

Boolean)}

AMoneyOrder = {a1 (Identifier, String), a2 (Issuer, String)}}

ACheck = {a1 (Agency, String), a2 (CheckNumber, String), a3

(RoutingNumber, String)}

ADebitCard = {a1 (Expiration, Date), a2 (Number, Integer), a3

(Type, String)}

AProduct = {a1 (Brand, String), a2 (Description, String), a3

(Manufacturer, String), a4 (SKU, String)}

R = {r1 (c1, c5, Association, (0...*, 1), (fulfilled by,

fulfilled), <->),

 r2 (c1, c6, Association, (0…*, 1), (ordered by, ordered),

<->),

 r3 (c1, c7, Association, (0…*, 1), (ship to, is used to

ship), <->),

 r4 (c1, c8, Association, (0…*, 1), (pay via, used to pay),

<->),

 r5 (c2, c3, Association, (1, 1), (orders form, ordered), <-

>),

 r6 (c8, c10, Generalization, Null, Null, ->),

 r7 (c8, c9, Generalization, Null, Null, ->),

 r8 (c8, c11, Generalization, Null, Null, ->),

 r9 (c6, c11, Composition, (1, 1…*), Null, ->),

 r10 (c1, c2, Composition, (1, 1…*), Null, ->),

 r11 (c6, c7, Composition, (1, 1…*), Null, ->),

 r12 (c4, c3, Composition, (1, 1…*), Null, ->),

 r13 (c3, c12, Association, (0…*, 1…*), (product, sales

point), <->) }

According to proposed transformation, the first rule is

that all classes in class diagram will transform to classes and

attributes will transform to attributes in ontology. So all

classes in Order Processing class will be defined in ontology

as:

DPurchaseOrder = (C, R) where,

C = Set of all classes in purchase order class diagram

R = Set of all relationship exist in purchase order class

diagram:

C= {c1 (Order, AOrder),

 c2 (OrderItem, AOrderItem),

 c3 (CatalogItem, ACatalogItem),

 c4 (Catalog, ACatalog),

 c5 (Employee, AEmployee),

 c6 (Customer, ACustomer),

 c7 (Address, AAddress),

 c8 (PaymentMethod, APaymentMethod),

 c9 (MoneyOrder, AMoneyOrder),

 c10 (Check, ACheck),

 c11 (DebitCard, ADebitCard),

 c12 (Product, AProduct)}

and all attributes of classes in Order Processing Class will be

attributes of classes in ontology as

AOrder = {a1 (OrderNumer, String)}

AOrderItem = {a1 (ItemPrice, Currency), a2 (ItemTotal,

Currency), a3 (Quantity, Integer)}

ACatalogItem = {a1 (CatalogNumber, String), a2

(Description, String), a3 (Price, Currency)}

ACatalog = {a1 (EffectiveDate, Date), a2 (Expiration, Date),

a3 (Identifier, String)}

AEmployee = {a1 (FirstName, String), a2 (LastName,

String)}

ACustomer = {a1 (CustomerCode, String), a2 (Name,

String)}

AAddress = {a1 (City, String), a2 (Country, String), a3

(PostalCode, String), a4 (State, String), a5 (StateAddress,

String)}

APaymentMethod = {a1 (Amount, Currency), a2 (IsPaid,

Boolean)}

AMoneyOrder = {a1 (Identifier, String), a2 (Issuer, String)}}

ACheck = {a1 (Agency, String), a2 (CheckNumber, String),

a3 (RoutingNumber, String)}

ADebitCard = {a1 (Expiration, Date), a2 (Number, Integer),

a3 (Type, String)}

AProduct = {a1 (Brand, String), a2 (Description, String),

a3 (Manufacturer, String), a4 (SKU, String)}

According to second rule of proposed transformation,

relationships between classes will transform to three types of

relationships in ontology. So after applying transformation

rule 2, the relationships in Order Processing Class will be

defined in ontology as

 R = {r1 (c1, c5, non-taxonomic, (0...*, 1), (fulfilled by,

fulfilled), <->),

 r2 (c1, c6, non-taxonomic, (0…*, 1), (ordered by,

ordered), <->),

 r3 (c1, c7, non-taxonomic, (0…*, 1), (ship to, is used to

ship), <->),

 r4 (c1, c8, non-taxonomic, (0…*, 1), (pay via, used to

pay), <->),

 r5 (c2, c3, non-taxonomic, (1, 1), (orders form, ordered),

<->),

 r6 (c8, c10, is-a, Null, Null, ->),

 r7 (c8, c9, is-a, Null, Null, ->),

 r8 (c8, c11, is-a, Null, Null, ->),

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 3, NO. 2, FEBRUARY 2012

[ISSN: 2045-7057] www.ijmse.org 43

 r9 (c6, c11, has-a, (1, 1…*), Null, ->),

 r10 (c1, c2, has-a, (1, 1…*), Null, ->),

 r11 (c6, c7, has-a, (1, 1…*), Null, ->),

 r12 (c4, c3, has-a, (1, 1…*), Null, ->),

 r13 (c3, c12, non-taxonomic, (0…*, 1…*), (product,

sales point), <->)

 }

All objects of class in Order Processing Class will transform

to individuals in ontology.

VI. RESULT, ANALYSIS AND DISCUSSION

The order processing ontology developed above can be

implemented with variety of tools available but in this case it

is implemented using Protégé, an open source tool for

ontology development. The developed ontology is validated

using following methods [2].

Firstly code generated by the tool is validated using

Manchester University online validator and the report of

validation is generated. The following figure shows the

validation report of developed ontology.

Secondly the inferred hierarchy is produced by the

Protégé-OWL tool. The following figure shows the inferred

hierarchy. Thirdly the ontology graph is produced by the

Protégé-OWL tool. The following figure shows the ontology

graph.

VII. CONCLUSION AND FUTURE WORK

We have presented the simple transformation for

developing ontology from object oriented paradigm. This

transformation is very simple and ontology can be easily

Fig. 4: Manchester University Online Ontology Validator Report

Fig. 5: Inferred Ontology produced by Protégé-OWL tool

Fig. 6: Ontology graph produced by Protégé-OWL tool

developed form object oriented class diagram by extractions

classes and relationships form class diagram and presented

these classes and relationships in ontology.

Future work and discussion will be focused on improving

this transformation and evaluating it by developing complex

ontologies and development of a tool which can automatically

develop ontology by taking class diagram mathematical form

as input.

REFERENCES

[1] R. Mizoguchi, K. Kozaki, O. Saito, T. Kumazawa and T. Matsui.

Structuring of Knowledge Based on Ontology Engineering. Hiroshi

Komiyama, Kazuhiko Takeuchi, Hideaki Shiroyama and Takashi
Mino (Eds.), Sustainability Science: A Multidisciplinary Approach,,

Section 2-3, pp.47-68, United Nations University Press, 2011.

[2] Kouji Kozaki, Takeru Hirota, and Riichiro Mizoguchi. A Quality
Assurance Framework for Ontology Construction and Refinement.

Proc. of 8th Extended Semantic Web Conference (ESWC2011),

pp.305-320, Heraklion, Greece, MAy 29 - June 2, 2011
[3] Barry Smith, Riichiro Mizoguchi and Sumio Nakagawa.

Interdisciplinary Ontology, Vol.3, Proceedings of the Third

Interdisciplinary Ontology Meeting. Keio University, Tokyo, Japan,
February 27-28, 2010

[4] Ian Horrocks. Ontologies and the semantic web. Communications of

the ACM, 51(12):58-67, December 2008.
[5] A Software Engineering Approach to Comparing Ontology Modeling

with Object Modeling. International Symposium on Computer Science

and its Applications (2008)
[6] ChiMu Corporation. Object Modeling, Foundations of O-R Mapping.

 Computer Science and its Applications, 2008. CSA 2008.

[7] Dr. Waralak V. Siricharoen. (2007) Ontologies and Object models in
Software Engineering.

[8] W3 working Group Note. (2006). A Semantic Web Primer for object-

oriented software developers.
[9] W. Vongdoiwang, .D. N. Batanov. (2004). Similarities and

Differences between Ontologies and Object Model. CCCT’05

proceeding 2004. Austin, Texas.
[10] P. Mohan, C. Brooks. (2004). Learning Objects on the Semantic Web

[11] Rodrigo Bonacin, Maria Cecília Calani Baranauskas, Kecheng

Liu. From Ontology Charts to Class Diagrams: Semantic Analysis
Aiding Systems Design. In Proceedings of ICEIS (3)'2004.

pp.389~395

[12] J. Angele, S.Staab, H. Schurr, Object Oriented Logics for Ontologies.
Draft Whitepaper Series, Karlsruhe, Germany, 2003.

[13] D. E. Jenz. (2003). It is High Time for Pursuing the Ontology-Centric

Approach Sujoy Paul. Using an UML Class Diagram to Model
DAML+OIL Ontology, 2003

[14] Paul Kogut. UML for ontology Development. Journal The Knowledge
Engineering Review, Volume 17 Issue 1, March 2002, New York.

[15] Cranefield, M. Purvis. (1999). UML as an Ontology Modeling

Language. Proceeding of the IJCAI-99 Workshop on Intelligent
Information Integration, Department of Information Science,

University of Otago, New Zealand.

