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Abstract– The methodology of vibration analysis for condition 

monitoring has been evolving at a rapid stage in the recent years. 

The ability to efficiently detect non-stationary, non-periodic, 

transient features of the vibration signal makes the wavelet 

analysis a demanding tool for condition monitoring. In this 

paper the application of Laplace wavelet kurtosis for processing 

vibration signal to detect faults in gears is presented. A gear 

testing apparatus is used for experimental studies to obtain 

vibration signal from a healthy and faulty gears. An 

experimental data is processed to compare the fault diagnostic 

capability of wavelet kurtosis with various wavelet statistical 

parameters such as Crest Factor, Impulse Factor and Shape 

Factors as obtained from Laplace wavelet. Further the Laplace 

wavelet kurtosis method is investigated for various working 

condition of the gear.Finally application of ANN is used for 

automated gear fault diagnosis by using the features extracted 

from wavelet transform. 
 
Keywords– Wavelet, ANN, Laplace Wavelet Kurtosis, Gear, Crest 

Factor, Shape Factor and Impulse Factor 
 

I. INTRODUCTION 

omplex and advanced machines have been largely used 

for increasing the productivity and profit. The gears are 

the major component in transmission systems and proper 

maintenance of gear system is very essential to ensure failure 

free operation of plant machines. Vibration analysis is one of 

the major tools used for fault diagnosis of gears. Vibration 

monitoring works on the principle of healthy gear and faulty 

gear develop different vibration signals due to presence of 

fault such as gear tooth crack, gear tooth wear, pitting etc [1]. 

To analyze vibration signals different techniques such as time 
domain, frequency domain and time–frequency domain 

techniques are extensively used [2]. The frequency domain 

uses Fast Fourier Transform (FFT) of the time domain signal 

to assess the condition based on the frequency content of the 

signal. Vibration signals emitting from the gears are 

considered to be non-stationary and non-periodic signals. In 

such cases it is difficult to detect the gear fault by 

conventional FFT analysis [3-6].Therefore an effective and 

sophisticated signal processing method like wavelet analysis 

for feature extraction from noisy gear signal can be used [7].  

A number of wavelet functions are being considered and 

monitored for mechanical fault detection. Morlet and Impulse 

wavelet are commonly used wavelets for fault diagnosis in 

bearings. The optimization of these functions is based on the 

fact that maximum kurtosis increases the quality of fault 

detection [8].  Laplace wavelet is a complex, single sided 

damped exponential which finds its application in vibration 

analysis of an aircraft for aerodynamic and structural testing 

and to diagnose the wear of the intake valve of an internal 
combustion engine [9], [10]. 

Some of the commonly used statistical parameters for 

vibration signature analysis are Root Mean Square (RMS), 

Crest Factor, Shape Factor, peak to peak Impulse Factor, 

kurtosis etc. Kurtosis is said to be a static indicator that finds 

its application in time history which allows it to define the 

impulse character of a signal. Kurtosis is defined as the fourth 

central cumulant divided by the square of the variance of the 

probability distribution [11].The representation of the kurtosis 

of each frequency component of a short time Fourier 

transform process is known as spectral kurtosis. The Crest 
Factor (CF) is the ratio of the peak value to the RMS value 

and hence dimensionless. Crest Factor helps in the study of 

differentiating a signal produced by a healthy and faulty gear 

box and also provides a mean to compare these noise 

measurements against the simulation results measured on the 

input and output shaft of the model [12], [13]. Shape Factors 

are a dimensionless quantity which defines the shape of an 

object or a signal. Shape factors are often normalized and thus 

its values vary from zero to one.  A shape Factor equal to one 

usually represents an ideal case or maximum symmetry. 

Shape Factor value should also be adjusted so that the fault 

generated impulses can be clearly identified from the de-
noising result [14]. Impulse factor is also used to indicate 

fault in rotating machinery and it is defined as ratio of peak 

value to the mean value of the signal [15]. 

Artificial Neural Network is a computational or a 

mathematical model which closely resembles to biological 

neural network. These are non-linear statistical data modeling 

tools that are adaptive in nature. They tend to change their 

structures based on the external and internal information 

given to it during training process. It consists of an 

interconnected group of artificial neurons, and it processes 

C 
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information using a connectionist approach to computation. 

ANN has been widely used in automated health detection and 

diagnosis of machine condition using features extracted from 

vibration signals. 

This paper presents the application and use of Laplace 

wavelet kurtosis (LWK) for gear fault diagnosis. Further, it is 
also investigated how the wavelet parameters can be 

optimized so as to maximize the kurtosis of the wavelet 

coefficients in order to render the wavelet coefficients 

sensitive to the generated fault signals. The statistical 

parameters from Laplace wavelet transform namely the Crest 

Factor, Impulse Factor and Shape Factor are obtained and 

compared under various fault condition in order to understand 

their potential of being used for   gear fault diagnosis. The 

study is also extended to on the behavior of Laplace wavelet 

kurtosis. Further it discusses the application of ANN for an 

effective classification of vibration data to analyze gear faults. 

II. WAVELET KURTOSIS 

A continuous wavelet is given by the following 

equation:  

W (a, b) = dt
a

bt

a
tx

1
)(               (1)                 

Where „b’ acts to translate the function across x(t) and 
the variable ‘a’ acts to vary the time scale of the probing 

function . If „a‟ is greater than 1, the wavelet function  

is stretched along the time axis and if „a‟ is less than 1 then 

it contracts. 

The Laplace wavelet is a complex, analytical and single-

sided damped exponential, and it is given by, 

 

           
)(t  A e

tj c
21                          (2) 

 

Where, β is a factor that controls the decay rate of the 

exponential envelope in the time, known as damping factor 

and regulates the resolution of the wavelet. It simultaneously 

corresponds to the frequency band width of the wavelet in the 

frequency domain. Frequency ωc determines the number of 

significant oscillations of the wavelet in the time domain and 

corresponds to the wavelet centre frequency in frequency 

domain. A is an arbitrary scaling factor. Fig. 1 depicts the 3-D 

view, the real and imaginary part of a Laplace wavelet. 

The wavelet transform (WT) of the signal x(t) with the 

mother wavelet (t) is the inner product of x(t) with a scaled 

and conjugate wavelet a,b. Since the wavelet used is 

analytical and as we employed complex wavelet to calculate 

the wavelet transform, the result of the wavelet transform 

obtained will also be analytical signal as shown in equation 

(3) and (4). 

 

WT{x(t), a,b} =  <x(t), a,b(t)>= 

dtttx
a

)(  )(
1

ba,                     (3) 

 
a) 

 

 
b) 

 

 
c) 

 

Fig. 1: a) 3 D view b) real part c) Imaginary part 

 

 

= Re [WT (a, b)] + J Im [WT (a,b)]                    (4) 

 

Where a, b is a family of wavelet with a as scale 

parameter and b as translation parameter.  
The Laplace wavelet kurtosis are calculated by the 

following steps: 
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a. Time domain values are collected  using an 

accelerometer and data collector from the experimental 

setup 

b. Time domain values are transformed into wavelet 

transform using Laplace wavelet function. 

c. Laplace wavelet kurtosis is calculated from wavelet 
transform 

The schematic representation of above process for   a 

vibration signal is depicted in Fig. 2. 

 

 

a) 

 

b) 

 
 

c) 

Fig. 2: The Methodology for calculation of wavelet kurtosis (a) Vibration 

signal collected from experimental setup, (b) The Wavelet Transform (c) Plot 

of Wavelet Kurtosis vs. wavelet scale. 

Let x (n) be a real discrete time random process, and WTa 

its N point Laplace wavelet transform at scale a. The Laplace 

wavelet kurtosis (LWK) for x(n) is defined as the kurtosis of 

the magnitude of WTaat each wavelet scale a as  given by [8]: 
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III.   EXPERIMENTAL SETUP 

The setup used for experimentation is shown in Fig. 3.  It 

consists of a motor, simple (one stage reduction) gear box and 

loading system. The input side of gearbox was connected to 

0.5 HP, 2900 RPM electric motor through coupling and the 
output side of the gearbox was connected to a loading system. 

All drive shafts are supported at its ends with antifriction 

bearings. The vibration data is collected from the drive end 

bearing of gear box using the accelerometer (model 621B40, 

IMI sensors, sensitivity is 1.02 mV/m/s2 and frequency range 

up to 18 kHz)  with a NI Data Acquisition Device The healthy 

gears are depicted in Fig. 4. The vibration data collected are 

processed in MATLAB for signal processing. 

The vibration signals from a healthy gear were collected 

at a shaft speed of 2850 RPM. Faults were induced in four 

different stages as shown in Table 1 and the corresponding 
vibration readings were taken. The various fault stages are 

shown in Fig. 5.  

 
 

TABLE 1: STAGES OF INDUCED FAULT 

 

Stage of fault 
Condition of the 

gear 
Fault description 

Stage 0 Healthy gear Without any induced fault 

Stage 1 Faulty gear 
A crack of 3mm is induced 

at the root of the tooth 

Stage 2 Faulty gear Tooth was partially broken 

Stage 3 Faulty gear Fault was further increased. 

Stage 4 Faulty gear 
Tooth was completely 

removed 

 

IV.   IMPLEMENTATION OF LWK 

This section provides implementation of the proposed 

approach of gear fault diagnosis. It is normal that the increase 

in the magnitude of the wavelet kurtosis value indicates the 

presence of fault. As the fault size progresses the 

corresponding wavelet kurtosis value is also expected to 

increase in magnitude.  Fig. 6 shows a typical time domain 

signal obtained from the experimental setup. 
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Fig. 3.  Fault Simulator set up 

 

Fig. 4: View of healthy gears 

 

 
a) 

 

 
b) 

 

 
c) 

 
d) 

 

Fig. 5: Stages of induced crack (a) Stage 1, (b) Stage 2, (c) Stage 3, and (d) 

Stage 4 

 

 

 
 

Fig. 6: Time domain data 

 

This is further processed using various signal processing 

techniques based on spectral kurtosis (SK) principle and 

wavelet kurtosis based on Laplace wavelet function. 

 

 

 
 

Fig. 7: SK for different stages of fault 

 

The Fig. 7 depicts the spectral kurtosis to determine the 

gear faults. Spectral kurtosis with various fault condition 

provides prominence of peak with stage 4 fault at higher 

frequency. However, it is difficult to analyze and isolate peaks 

corresponding to the healthy and faulty signals due to 

complex inter mixing of signals at constant window size. The 

implementation of equation.5 results in Laplace wavelet 
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kurtosis with wavelet scale of 90 for the gear with healthy 

conditions and at 4 different stages of crack as shown in    

Fig. 8. The Laplace wavelet shape parameters β= 0.3 and c

=8.1 are selected based on maximum kurtosis. 
 

 
 

Fig. 8: Laplace wavelet kurtosis 

 

The healthy and faulty conditions of the gear at different 
stages are shown with increasing magnitude of LWK value 

with distinct correlation between them. As the fault 

progresses in size, corresponding LWK values also increase 

in magnitude. The wavelet scale number and frequency 

relationship is given as:  

Fa = 
*

0

a

F
   (6) 

Where Fa is frequency, F0= wavelet central frequency, a = 

wavelet scale,  = sampling frequency. The wavelet scale 
number of 30 is corresponding to the frequency of 24Hz, 

which is equal to gear rotation frequency. It is evident, LWK 

results in a prominent magnitude at gear rotation frequency   

with all fault conditions and increase in magnitude is 

significant for stage 3 and 4 fault condition at all wavelet 

scale.  

Fig. 9 shows the comparison of Laplace wavelet kurtosis 

with other Laplace wavelet transforms statistical parameters 

like Crest Factor, Impulse Factor, and Shape Factor. As seen 

from the Fig. 9, the Laplace wavelet Crest Factor depicts 
changes in the magnitude, but fails to show the distinction of 

fault at different stages. However, the Crest Factor at wavelet 

scale 30 is dominant with stage 3 and 4 faults. This means 

that the scale factor is sensitive to the fault at the last stage of 

degradation. We observe that Laplace wavelet Shape Factor 

provides useful insight into the indication fault particularly at 

the later stage of fault development, but often fails to give 

proportional changes with degree of fault. Impulse Factor 

provides considerable changes in relation to magnitude of 

fault, but not essentially showing evidence of consistency, 

might be attributed to the error in data. Fig. 9(c) shows the 
significant changes in shape factor, particularly with later 

stage of fault (stage 4). Again there is a moderate changes in 

Shape Factors at the initial stage of fault. More or less, the 

Impulse Factor and Shape Factor and Crest Factor parameters  

are more prominent  when the  defect in the  gears reaches the 

final stage of degradation even though , these parameters 

provide an indication of fault at gear mesh frequency with all 

fault conditions. 
 

 
a) 

 

 
b) 

 

 
c) 

Fig. 9: (a) Laplace wavelet Crest Factor (b) Laplace wavelet Impulse Factor 

(c) Laplace wavelet shape factor 
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The proposed Laplace wavelet kurtosis method is also 

implemented for the different working condition of gears 

(change in load, speed and lubrication). Fig. 10 shows the 

Laplace wavelet kurtosis for varying speed, load and 

lubrication conditions. 
 

 
a) 

 

 
b) 

  

  
c) 

 

Fig. 10: Laplace wavelet kurtosis for different working conditions (a) varying 

speed condition (b) varying load conditions (c) varying lubrication condition 

 

The result obtained shows that the Laplace wavelet kurtosis 

does not show significant changes with respect to varying 

work conditions.  

V.   ARTIFICIAL NEURAL NETWORK (ANN) 

A feed forward multilayer perceptron (MLP) neural 

network has been developed with 3 layers. ANN consists of 

one input layer with 4 source nodes and a hidden layer of 5 

computation nodes. The output layer with 2 nodes, which 

classifies the working condition of gear as healthy (0 1) and 

faulty (1 0) for the gear signals has been developed. Fig. 11 

shows the architecture of ANN implemented for the 

application of fault diagnosis in gears.  

ANN training and testing was created using MATLAB 

Neural Network toolbox with maximum iterations (epochs) of 
1000, MSE of 10E-10, minimum gradient of 10E-10 were 

used. The training process would stop, if any of these 

restrictions are met. The initial weights and biases of the 

network are generated by the program.  

Training of an MLP network is achieved by modifying 

the connection weights and biases iteratively to optimize the 

performance criterion. Statistical features like Standard 

deviation and Kurtosis and in frequency domain such as peak 

frequency (fmax) to the shaft rotational frequency (frpm) ratio 

(fmax/frpm), and the maximum amplitude (Amax) to the overall 

amplitude (Sum (Ai)) ratio (Amax/sum(Ai)) of vibration signals 
obtained from wavelet transform with Laplace wavelet as 

base function are used as an input to ANN. The training 

process is shown in Fig. 12. The ANN needs only 18 epochs 

to reach the 5x10-3 MSE. The MSE for the testing process is 

shown in Fig. 13. 
 

 

 
Fig. 11: Architecture of ANN 

 

 
Fig. 12: Training process 
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Fig. 13: Testing process 

 

VI.    CONCLUSION 

Various signal processing methods adopted using wavelet 

transform for the gear fault diagnosis is presented in this 

paper. Gear fault diagnosis using Laplace wavelet kurtosis is 

implemented and the results are studied for the various stages 

of induced fault conditions in the experimental setup.  
Further, statistical parameters like Laplace wavelet crest 

factor, Impulse Factor and shape factors are compared with 

kurtosis parameter. The proposed Laplace wavelet kurtosis 

method depicts increasing magnitude of LWK value along 

with increase in the size of fault and hence shows prominence 

as a useful tool to show the correlation between healthy and 

faulty gears. It was also observed that Laplace wavelet 

kurtosis proved to be a better tool for vibration analysis than 

other Laplace statistical parameters. The study also shows that 

Laplace wavelet kurtosis has less influence for varying work 

condition. All these factors enhance the use of this proposed 
method for gear fault diagnosis. Further, wavelet coefficients 

provide provision for statistical features of signal which can 

be used as inputs to ANN. The result of the learning process 

of the proposed ANN shows that the training with 18 

iterations met the MSE stopping criteria (MSE less than    

5x10-3).The test process for unseen vibration data of the 

trained ANN combined with the ideal output target values 

indicates the high success rate for automated gear fault 

detection. 
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