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Abstract– In this work, the effect of Nanofluid on the heat and 

fluid flow over an unsteady stretching sheet in presence of 

thermal radiation is analyzed. The governing nonlinear partial 

differential equations have been reduced to the coupled nonlinear 

ordinary differential equations by the similarity transformations. 

An efficient numerical shooting technique with a fourth-order 

Runge-Kutta scheme was used to obtain the solution of the 

boundary value problem. The similarity equations were solved 

numerically for one typs of nanoparticles, namely copper with 

water as the base fluid with the Prandtl number Pr = 3.73 to 

investigate the effect of the solid volume fraction φ and another 

parameters of the nanofluid. The results of velocity and 

temperature distributions for different parameters such as the 

solid volume fraction, the unsteadiness parameter and the 

radiation parameter were obtained. It is shown that the heat 

transfer rate is increased with increasing φ. The present results 

are compared with some reported theoretical results by other 

investigators and good agreement is found.                                                                               

 
Keywords– Nanofluid, Unsteady Stretching Sheet, Heat 

Transfer and Radiation 

 

I. INTRODUCTION 

he study of flow and heat transfer over a 

stretching/shrinking sheet is an important problem in 

many engineering processes with application in industries such 

as extrusion of plastic sheets, wire drawing, hot rolling and 

glass fiber production. In particular, in the extrusion of a 

polymer in a melt-spinning process, the extrudate from the die 

is generally drawn and simultaneously stretched into a thin 

sheet, and then solidified through quenching or gradual 

cooling by direct contact with water or coolant liquid. The 

boundary layer flow on a continuously stretching sheet with a 

constant speed and various aspects of the problem have been 

investigated (Sakiadis, 1961). The flow of a Newtonian  fluid 

over a linearly stretching surface have been studied 

(Crane,1970).  

The effect of thermal radiation on the  flow and heat transfer 

in a viscous fluid over an unsteady stretching surface was 

carried out. At this study, three-parameter of problem solved 

numerically for some representative values of the unsteadiness 

parameter A, the radiation parameter R and Prandtl number Pr.  

 

It was shown that the heat transfer rate is increased with 

increasing R, A and Pr. Also the effect of radiation parameter 

on the heat transfer rate was found to be more noticeable at 

larger values of A and Pr (El-Aziz, 2009). Hydromagnetic 

boundary-layer flow over an accelerating permeable surface in 

the presence of  thermal radiation, buoyancy, and heat 

generation or absorption effects have been investigated 

(Chamkha, 2000). Thermal radiation and magnetic field of a 

micropolar fluid past a stretched semi-infinite, vertical and 

permeable surface in  the presence of temperature dependent 

heat generation or absorption studied. A parametric study 

illustrating the influence of the various physical parameters on 

the skin friction coefficient, microrotaion coefficient or wall 

couple stress as well as the wall heat transfer coefficient or 

Nusselt number conducted (Khedr, 2009).  

The boundary layer flow and heat transfer analysis of 

electrically conducting viscous fluid over a nonlinearly 

shrinking sheet have been investigated (Javed, 2011). At this 

work, the system of equations is solved numerically employing 

an implicit finite difference scheme known as Keller-box 

method. The numerical results for the velocity, temperature, 

wall skin friction coefficient and local rate of heat transfer 

through the surface for various values of physical parameters 

both in case of stretching and shrinking sheet were analyzed 

and discussed for both the solutions. A numerical solution for 

the magnetohydrodynamic (MHD) non-Newtonian power-law 

fluid flow over a semi-infinite and non-isothermal stretching 

sheet with internal heat generation/absorption have been 

carried out. The governing partial differential equations of 

momentum and energy were converted into ordinary 

differential equations by using a classical similarity 

transformation along with appropriate boundary conditions.  

It is important to note that the momentum and thermal 

boundary layer thickness decrease with increase in the power-

law index in presence/absence of variable thermal conductivity 

(Prasad et.al, 2009). Following these works, the various 

aspects of problem with different boundary conditions and 

fluids including  micropolar fluids (Ashraf, 2011), moving 

material with suction or injection (Al-Sanae, 2000), nanofluid 

past a semi-infinite vertical stretching  sheet (Rosmila, 2012), 

stretching/shrinking sheet in a nanofluid (Norazian, 2012), 
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viscous fluid containing metallic nanoparticles over a 

nonlinear stretching sheet (Hamad, 2012), suspending metallic 

nanoparticles in conventional heat transfer fluids (Stephen, 

1995), heat transfer of nanofluids (Choi,2011) are considered. 

Based on the above mentioned investigations and applications, 

this paper is concerned with a Unsteady, two dimensional 

Stretching Sheet in the presence of nanofluid and radiation 

effect.  

The results of velocity and temperature distributions for 

different parameters such as the solid volume fraction, the 

unsteadiness parameter, the radiation parameter were obtained. 

The obtained results are checked against previously published 

work for special cases of the problem in order to access the 

accuracy of the numerical method and found to be in excellent 

agreement. 

II. DESCRIPTION AND FORMULATION 

A. Description of Problem 

Consider the  flow of a viscous and incompressible  

nanofluid on a horizontal sheet ,which issues from a slot at the 

origin. The  nanofluid is considered to be a gray, absorbing–

emitting radiation but non-scattering medium and the 

Rosseland approximation is used to describe the radiative heat  

flux in the energy equations. The radiative heat flux in the x-

direction is negligible in comparison with that in the y-

direction. The fluid motion arises due to the stretching of the 

elastic sheet. As schematic representation of the physical 

model and coordinates system is depicted in Fig. 1. 

Figure. 1. Scheme of stretching sheet configuration 

 

The continuous sheet aligned with the x-axis at y=0 moves 

in its own plane with a velocity  ( , )
w

U x t  and the temperature 

distribution ( , )
w

T x t    varies both along the sheet and with 

time. 

B. Governing Equations 

The velocity and temperature fields in the boundary layer 

are governed by the two-dimensional boundary layer equations 

for mass, momentum and thermal energy: 
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Equations (1) - (2) and Eq. (3) should be solved by 

appropriate boundary conditions. In accordance with the 

problem description, the boundary conditions can be written as 

follows: 

( , ), 0,T ( , )w wu U x t v T x t      at   0y     (4) 

0,u T T     as  y                                  (5) 

where u and v are the velocity components along the x-and 

y-axes, the subscript of  nf  denote the properties of 

nanofluid. The properties of nanofluids are defined as follows 

(Yacob, 2011): 
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where subscript of  f  and s  represent the base fluid and 

nanoparticle suspension, respectively. Here,   is the 

nanoparticle volume fraction. The thermophysical properties 

of fluid and nanoparticles are given (Table I) (Abu-Nada & 

Oztop, 2009). 

 

Table I: Thermophysical properties of fluid and nanoparticles 

Physical 

properties 

Fluid 

phase 

(water) 

Cu  

 pC J Kg K

 
4179 385  

 3kg m
 

997.1 8933  

 k W m K
 

0.613 400  
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The radiative heat flux rq under Rosseland approximation 

(Brewster, 1992) has the form:  

4

1

4

3
r

T
q

k y

 
 


                                                          (11) 

where    is the Stefan–Boltzmann constant and  1k  is the 

mean absorption coefficient. Assuming that the temperature 

differences within the flow are sufficiently small so that 
4T   

can be expanded in Taylor series about the free stream 

temperature T   to yield 

4 3 44 3T T T T                                                        (12) 

Where the higher-order terms of the expansion are 

neglected. In view of Eqs. (12) and (11), Eq. (3) reduces to: 
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                                                                                      (13)                                                                                     

The stretching velocity  ,wU x t   is assumed to be of the 

form (Andersson, 2000): 

(1 )wU bx t 
                                                      (14) 

where b and α are constants (with 0b    and 0    

where 1t   ), and both have dimension
1t 
 , we have b   as 

the initial stretching rate (1 )b t   and it is increasing with 

time. In the context of polymer extrusion, the material 

properties, in particular the elasticity of the extruded sheet may 

vary with time even though the sheet is being stretched by a 

constant force. With unsteady stretching, however, 
1 
 

becomes the representative time scale of the resulting unsteady 

boundary layer problem. The adopted formulation of the sheet 

velocity ( , )wU x t   in Eq. (14) is valid only for times 

1t     unless 0  . We assume the surface temperature 

( , )wT x t   of the stretching sheet to vary with the distance 

x and time t  in the form: 

 
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

                (15) 

Where 0T   is a (positive or negative; heating or cooling) 

reference temperature. Introducing the similarity variable    

and the dimensionless variables f and    as follows: 
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where,  , ,x y t  is a stream function  which 

automatically assures mass conservation. The velocity 

components are readily obtained as: 
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The mathematical problem defined in Eqs. (1), (2) and  

(13) are then transformed into a set of ordinary differential 

equations and their associated boundary conditions: 

2''' '' ' ' '' 0
2

f ff f A f f      
  

               (20) 

   '' ' '3 4 3 .Pr. 2 3 0
2

AR R f f           
 

                                                                                                

                                                                                  (21) 

Where : 

   
5 2

1

1 1 s f


    


    

                     (22) 

 

 

 

 
 

 
 

2
1

2 2

ps f f s s

s f f s p f

ck k k k

k k k k c


  

 

         
        

                                                     

                                                                                  (23) 

the unsteadiness parameter A b , non-dimensional 

temperature    wT T T T     , the radiation 

parameter 
3

1 4nfR k k T  . Their associated boundary 

conditions: 

 0 0f     ,  ' 0 1f   ,  0 1                         (24) 

 ' 0f      ,    0                                         (25) 

From the engineering point of view, the important 

characteristics of the flow are the skin-friction coefficient and 

the Nusselt number, respectively defined as : 
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 where Rex w fU x    is the local Reynolds number 

based on the sheet velocity wU . 

III. RESULTS AND DISCUSSIONS 

In order to get the physical insight into the flow problem, 

comprehensive numerical computations are conducted for 

various values of the parameters that describe the flow 

characteristics, and the results are illustrated graphically. 

Figures 2(a) and 2(b) illustrate the effect of nanoparticle 

volume fraction   on the nanofluid velocity profile for steady 

(A=0) and unsteady (A=0.2) test case, respectively. In this 

case the Cu nanoparticles and water base fluid (Pr = 3.73) 

when 0,0.05,0.1,0.5   and R = 5 is considered. It is clear 

that, as the nanoparticles volume fraction increases, the 

nanofluid velocity decreases. In addition, the results show that 

the velocity decreases with the distance from the stretching 

sheet for all .  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



F
'(


)

 

 

=0

=0.05

=.1

=.5

 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1




(

)

 

 

=0

=0.05

=.1

=.5

 
(b) 

Figure 2: Velocity profiles for various values of  with R=5 and Pr =3.73        

for Cu-water working fluid   (a) steady state condition (A=0),                                            

(b) unsteady state condition (A=0.2) 

 

The values for Velocity profiles and Temperature profiles 

are compared with the available results in the previous 

literature (El-Aziz, 2009) for the steady case (A = 0) and 

 0    presented. The results are found to be in good 

agreement. Figures 4 and 5 depict the effect of the volume 

fraction   on the nanofluid temperature profile ( )   at steady 

and unsteady conditions, respectively. Figure 3(a) illustrates 

that increases of volume fraction tends to decrease the 

nanofluid temperature in the case of Cu-water when A=0, and 

R = 5. Furthermore, Figure 3(b) shows that increasing the 

volume fraction   tends to decrease the temperature 

distribution the same values, thus leading to higher heat 

transfer rate between the nanofluid and the surface. These 

figures show the good agreement with the physical behavior of 

nanofluids. Because when the volume of nanoparticles 

increases, the thermal conductivity increases and then the 

thermal boundary layer thickness increases. 
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Figure 3: Temperature profiles for various values of


 with R=5 and           

Pr =3.73 for Cu-water working fluid  (a) steady state condition (A=0),                                            

(b) unsteady state condition (A=0.2) 

 

In Figures 4(a) and 4(b), the typical velocity and 

temperature distributions are plotted respectively for R=5,      

Pr =3.73,  =0.05 and for different values of the unsteadiness 

parameter A. This parameter considered here is A=0, 0.2, 0.4 

and 0.6. It is observed that when the value of A increases, then 

the velocity profiles decrease, while the temperature profile 

will be constant. The results show that the velocity and 

temperature decrease with the distance from the stretching 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 4, NO. 9, OCTOBER 2013 

[ISSN: 2045-7057]                                                                             www.ijmse.org                                                                                     10 

sheet for all of A. In addition, increasing the value of A tends 

to decrease the velocity in the boundary layer without any flow 

reversal. 
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Figure 4: (a) Velocity and (b) temperature profiles for various values of A  

with 0.05  , R=5 and Pr =3.73 for Cu-water working fluid 

The effect of the radiation parameter R on the velocity and 

temperature profiles in the case of Cu-water when the radiation 

parameter R = 0.05, 0.5, 1 and 5 with A = 0.2, Pr = 3.73 and 

 =0.05 are shown in Figures 5(a) and 5(b), respectively. It is 

clear that the velocity will be constant  by increasing  the value 

of  R while, temperature distribution decreases with an 

increase in the radiation parameter R. The results show that the 

temperature decreases with the distance from the stretching 

sheet for of the all R.  

IV. CONCLUSION 

An unsteady forced convection boundary-layer flow of a 

nanofluid due to a stretching sheet is studied with the influence 

of thermal radiation. The similarity technique has been 

employed as a solution technique to complete the formulation 

of the unsteady model. For both the steady and unsteady case, 

the behavior of nanofluid is analyzed. The results are 

presented for the effect of various parameters. The velocity 

and temperature effects on the sheet are studied and shown 

graphically. Some of the interesting conclusions are as follows: 

(i)  It is observed that an increase the solid volume 

fraction   is to decrease the thermal boundary layers. 

(ii) the velocity boundary layers depends on the material 

and solid volume fraction. 

(iii) the values of  the unsteadiness parameter A has no 

influence on  Temperature profiles. 

(iv) the values of  the radiation parameter R has no 

influence on  velocity profiles. 
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Figure 5: (a) Velocity and (b) temperature profiles for various values of  R 

with A=0.2,
 
 =0.05 and Pr =3.73 for Cu-water working fluid 
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