
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 5, NO. 8, AUGUST 2014

[ISSN: 2045-7057] www.ijmse.org 14

Abstract— Multilevel queue scheduling and Real time scheduling

is common in CPU scheduling techniques. In this paper different

techniques for scheduling these algorithms has been collected and

discussed. Primarily an introduction to multilevel queue and real

time scheduling are discussed. In multi-level queue scheduling,

the starvation problem has been solved efficiently but this

technique is not suitable for real time processes. To overcome this

problem, an idea of new algorithm i.e., MLQPTS (Multilevel

Queue with Priority & Time Sharing Scheduling) have been

proposed. In this algorithm, all the processes are listed in a queue

and this queue is built depending upon the priority of each

process. This priority is calculated by considering the factors

such as waiting time, processing time, deadline time, etc of each

process. A queue executes for a specific time called Queue

Execution Time. Each process gets its time share in execution

depending upon the priority-level. After each execution interval,

priority of each process is re-calculated and a new queue is built

which accommodates the new incoming process as well. In this

way, our proposed algorithm has the properties of MLQS and it

can also accommodate real time processes. The objective of the

study is to have better understanding of Multi-Level Queue and

Real time scheduling and to see what challenges they have to face

and how these challenges are resolved by using different

techniques.

Keywords— MLQS (Multilevel Queue Scheduling), RTS (Real

Time Scheduling), MLFQS (Multilevel Feed Back Queue

Scheduling) and MLQPTS (Multilevel Queue with Priority &

Time Sharing Scheduling)

I. INTRODUCTION

ne of the constant challenges for multi-level queue

scheduling is to minimize resource starvation and to

ensure fairness amongst the parties utilizing the resources

and for real time systems is to build a platform that can meet

timeliness requirement of system. After having a look on these

two scheduling algorithms we also introduce a new scheduling

technique that will overcome the problems of real time

Iqra Sattar is with the Department of Computer Science & Engineering,

University of Lahore (Sargodha Campus), Pakistan

(Email: iqrasatar@gmail.com)

Muhammad Shahid is with Department of Electrical Engineering and

Computer Science, Pakistan Institute of Engineering and Applied Sciences,

Pakistan (Email: shahidbhutta@gmail.com)

Nida Yasir is with the Department of Computer Science & Engineering,

University of Lahore (Sargodha Campus), Pakistan

(Email: nida.yasir@yahoo.com)

scheduling and multi-level queue scheduling algorithms to

some extent. For Multi-programmed operating system CPU

scheduling is the basic requirement. To obtain the maximum

CPU utilization CPU is switched among various processes, in

this way system become more productive. Scheduling is a

policy that guarantees that no job waits indefinitely for a

service. CPU is one of most important resources which require

scheduling, on which the working and speed of system

depends. Scheduling deals with the problem of deciding which

of the outstanding requests is to be allocated resources. In

multi-programmed system when the CPU becomes idle

operating system select one of the processes that are in the

ready queue to be executed. CPU scheduling is important

because it can have a huge effect on resource utilization and

on overall performance of the system [8]. There are three

different types of scheduler long term (job scheduler), medium

scheduler and short term (job scheduler). Short term scheduler

selects the processes from the ready queue and then it’s the

duty of dispatcher to allocate CPU to selected process.

Different CPU scheduling algorithm exists for different

environments. The criteria used for scheduling algorithm

optimization include maximum CPU utilization, maximum

throughput, smallest turnaround period, least waiting time, and

minimum reply time. There is no universal best scheduling

algorithm and many operating systems use extended or

combinations of the scheduling algorithms.

Scheduling of CPU resource has many ways by which it can

be scheduled like FIFO, Round Robin, Shortest Job First

Priority queue and so on, But scheduling a CPU which has

different type of processes, which are required to run can be

scheduled using Multi level queue scheduling.

The Multi-level Queue scheduling is considered to be

superior due to its better management of variety of processes.

Multi-level Queue scheduling is intended to meet the

following design requirements for multimode systems: Give

preference to small jobs and I/O bound processes. Processes

are divided into categories based on their need for the CPU.

Other scheduling algorithm is real time scheduling. A real-

time system is a system that is required to complete the task

within time intervals directed by the environment [1].

Real-time systems are those whose correctness depends not

only on logical results of computations, but also on the time at

which the results are produced.

A. First we have a look on basic CPU scheduling

techniques

First Come First Serve: It is a traditional scheduling

technique in which all the jobs have same priority, job queue

Multi-Level Queue with Priority and Time

Sharing for Real Time Scheduling

Iqra Sattar, Muhammad Shahid and Nida Yasir

O

mailto:iqrasatar@gmail.com
mailto:shahidbhutta@gmail.com
mailto:nida.yasir@yahoo.com

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 5, NO. 8, AUGUST 2014

[ISSN: 2045-7057] www.ijmse.org 15

scheduled the jobs in the order in which they come, job which

come first will take CPU time first then next and so on,

processes are inserted into the tail of a queue when they are

submitted.[9] The next process is for execution is taken from

the head of the queue.

Round Robin Scheduling: In this all the processes in the

job queue gets an equal amount of CPU time. After the time

expires, the process is preempted and added to end of ready

queue. The scheduler goes around this queue, allocating the

CPU to each process for a time interval of allocated quantum.

New processes are added to end of the queue [10].

Shortest Job First: The process which has short burst time

will schedule first to run then next shortest job gets the CPU

time. A scheduler arranges the processes with the least burst

time in head of the queue and longest burst time in tail of the

queue. This requires advanced knowledge or estimations

about the time required for a process to complete [9]. This

algorithm is designed for maximum throughput in most

scenarios.

Priority Scheduling: In this scheduling jobs are assigned

the priority by the user. The OS assigns a fixed priority rank

to each process. Lower priority processes get interrupted by

incoming higher priority processes.

B. Multi-Level Queue Scheduling

The situation in which the process is divided into different

groups, multi-level queue scheduling is used. The

characteristics of multi-level scheduling are as follows

(Fig. 1):

Based on the types, the processes are divided into different

queue. Processes are assigned to one queue permanently. The

scheduling algorithm is each queue is unique. For example, as

shown in the figure below, interactive process and batch job

may use round robin scheduling method and FCFS method

respectively.

Fig. 1: Multi-level queue scheduling

Also, the queue must be scheduled and generally, it has

fixed priority. A common division between foreground

processes and background processes is made. These two types

of processes may differ in their response times; therefore, they

may need different scheduling. The foreground processes may

have priority over background processes and this priority may

be defined externally. The batch queue can only be executed

when the queue for system executes and the interactive

processes are idle or empty. If the batch process is still in

process and the interactive process enters the ready queue, the

batch will be prevented.

C. Real Time Scheduling

A real Time System is a system in which the timing

constraints are strict. The output results of these systems

depend upon the algorithm of computation and the time

duration utilized to generate certain results. If the timing

constraints are violated, the obtained results are no longer

valid. Therefore, it is necessary to abide by the timing

condition. Also, the algorithm must efficient enough to fully

utilize the available resources [2] – [6]. Each process has

timing properties. These properties must consider while

scheduling and executing on real time system. These

properties include: release time / ready time, deadline,

execution time, completion time, finishing time, penalty factor

etc [4] – [7].

A real-time system will usually have to meet many demands

within a limited time. Thus, the allocation of the system

resources needs to be planned so that all demands are met by

the time of their respective deadlines. This is usually done

using a scheduler which implements a scheduling policy that

determines how the resources of the system are allocated to

the demands.

RTS can be divided further into two categories: There are

two types of Real Time Systems: (i) Hard Real Time Systems

and (ii) Soft Real Time Systems. Hard Real Time Systems are

those in which the deadline condition must be fulfilled or else

there will be undesirable consequences such fatal error or

damage to the system. Soft Real Time Systems are those in

which the deadline condition can be compromised up to an

allowable limit [4], [5], [6].

Analysis for real-time scheduling: There are a number of

algorithms available that loads the CPU up to 100% to

increase the utilization factor. The processes are scheduled

with respect to Earliest Deadline First (EDF) and Least Laxity

First (LLF). These both algorithms are optimal. EDF

algorithm searches through all the process and executes the

process which the earliest deadline. LLF algorithm schedules

and executes the process which has least laxity.

II. LITERATURE SURVEY

In this section different methods proposed by different

authors for scheduling these two techniques has been collected

and discussed.

A. MLFQ (Multi Level Feed Back Queue) Scheduling

Algorithm

MLFQ using Three queues: In MLFQ (Multi-level

feedback queue) scheduling, the queue is divided into three

parts where two queues have Round Robin scheduling

technique and the remaining one has FCFS scheduling

technique [15]. All the processes are sorted in first queue

according to their burst time and then they are allowed to

execute for a specific time. When the processes complete their

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 5, NO. 8, AUGUST 2014

[ISSN: 2045-7057] www.ijmse.org 16

initial execution, they are sorted in second queue according to

their remaining burst time. After the execution, the processes

are moved to the third queue where they are sorted to run with

FCFS scheduling technique. This algorithm helps to minimize

the waiting time and turnaround time but CPU has to wait to

build a queue of all the processes. It is the main cause that

limits the best utilization of resources.

MLFQ using Five queues: In this technique, the processes

are scheduled in five different queues. Initial priority is not

assigned to the process but they are scheduled using Round

Robin scheduling with a suitable time quantum value at the

time when the process is initiated [16]. The processes are

scheduled and allowed to run in a queue according to their

burst time. In the end, either the processes are completed or

they are sorted to run into the second queue to run again with

the remaining burst time and waiting time. This scheduling is

done using Round Robin CPU scheduling technique which

also assigns a suitable time quantum value. Waiting time and

remaining CPU burst time and turnaround time are the main

parameters that are calculated and updated in each step. At the

end of second queue, either the processes get completed or

they are further sorted to next queue till all the processes get

executed. Some processes have to for long time for execution.

This scheduling algorithm executes all the processes in

parallel. In this way, this algorithm removes the starvation

problem of different processes. In this case the number of

switches is more because of the storage and calculations of

burst time and waiting time of each queue.

B. WFQ (Weighted Fair Queue) Scheduling Algorithm

In the proposed algorithm [14], the multi-level queue

management technique is described. It is very critical

technique for CPU process scheduling. In the proposed

algorithm, weighted fair queue (WFQ) is used for multilevel

queue scheduling. WFQ algorithm divides the queue into a

number of multiple queues and each queue is assigned a

weight that defines the number of jobs to be scheduled in a

queue for next round. WFQ is used with fuzzy inference

system therefore, the newly proposed algorithm is named as

Fuzzy Dynamic Weighted Fair Queue (FDWFQ) that

schedules the incoming requests into different queues and

assigns a weight to each queue that determines the number of

jobs to be scheduled next from that particular queue. The

incoming requests are arranged into different queues

depending upon the nature of the process. The weights for

different queues are determined accordingly. This algorithm

tends to minimize the incoming requests rejection the fuzzy

model is used to design this algorithm. Mamdani-style

inference engine is employed to calculate the dynamic weight

for each queue. The design is efficient for request

management to meet the deadline and in this way the loss of

requests is minimized.

C. Earliest-Deadline-First Scheduling (EDF)

Liu and Leyland proposed EDF Scheduling [11]. EDF

algorithm searches through all the process and executes the

process which the earliest deadline. The algorithm is as

follows:

Step 1: Load all the tasks and determine their characteristics

such as start time, end time, remaining time and deadline.

Step 2: Check if the system is in idle state, then start task

processing and after processing go to step 4. If there is no

process to process then go to step 3.

Step 3: If a new task with earliest deadline enters, then

update the remaining time of the process that is in process and

exchange it with the new process. Else update the starting time

of new process.

Step 4: Go to step 2 if the tasks are not scheduled. Else

stop.

This algorithm fully utilizes the available resources of CPU

and all the deadlines of the process can be met. This is the

main advantage of this algorithm

D. Least Laxity First (LLF)

This algorithm is proposed by David B. Stewart and

Pradeep K. Khosla [12]. In this algorithm, the laxity to each

task is assigned and the task with minimum laxity is processed

first. This is the reason that this algorithm is call Least Laxity

First algorithm. The laxity of a task is defined by the

difference of deadline time and remaining time of

computation. The priority is assigned according to the laxity

of each process [13]. There is a phenomenon that if a process

loads and it has smaller laxity as compared the task which is in

process then the task with greater laxity will be closed and its

remaining time will be assigned after calculation and the task

with smaller laxity will start execution to meet the deadline. It

is an ideal algorithm for the system which processes the

periodic real time tasks.

III. PROPOSED ALGORITHM

The starvation problem has been solved efficiently by

MLQS but it is not suitable for real time processes. To

accommodate both of them, MLQPTS (Multilevel Queue with

Priority & Time Sharing Scheduling) have developed in which

all the tasks are scheduled in a queue depending upon the

priority level. This priority level is defined from the

characteristics of the process. The process with greater

priority will get major share in execution time to meet the

deadline condition. In this way, this algorithm will meet the

deadline condition which is the property of real time systems.

Hence the real time task can also be executed using multi-

level queue technique (Fig. 2):

Step 1: Create a list of all the tasks. If a new task enters, it is

also included in the list.

Step 2: Calculated the priority index for each task

depending upon the properties of tasks such as deadline time,

waiting time, response time etc.

Step 3: Build a queue depending upon the priority of tasks.

A queue runs for a specific time. Each task gets its execution

time share depending upon the priority level. After that, go to

Step 2.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 5, NO. 8, AUGUST 2014

[ISSN: 2045-7057] www.ijmse.org 17

Fig. 2: Proposed Algorithm (MLQPTS)

In this algorithm, initially all the tasks enter into the list.

From the list priority level of all the tasks that exists in the list

is calculated. The priority level depends upon the

characteristic of the processes such as their waiting time,

turnaround time, deadline time etc. After that a queue is built

depending upon the calculated priority level and each queue

executes for a specific time called Queue Execution Time.

Each task gets its time share in execution but the task having

the highest priority will execute first having major time in

execution to meet the deadline condition. After each execution

interval, priority level of each process is re-calculated, the

processes that need to be re-scheduled is again listed and a

new queue is built which accommodates the new incoming

process as well and the whole process starts again.

Key Features:

 It removes the starvation problem. All the tasks get

their time share in queue execution interval.

 Critical tasks which has earliest deadline are executed

first to meet the deadline, therefore, this algorithm is

suitable for real time tasks.

 It builds a new queue after each queue execution

interval; the CPU utilization factor might be slightly

low due to re-calculation of priority level again and

again till completion of processes.

IV. CONCLUSION & FUTURE WORK

Different algorithms exists for Real time and Multilevel

queue scheduling which improves different factors like

waiting, turnaround time and starvation etc but there is a still

scope of improvement. Multilevel queue scheduling removes

the starvation problem of different processes but this

technique is not suitable for real time processes. To overcome

this problem, we have proposed Multilevel Queue with

Priority & Time Sharing for Real time scheduling which has

the properties of MLQS and also accommodate real time

processes.

In our future work we will try to improve and carry on our

idea in detail to increase the performance of the existing

system and to have maximum CPU utilization. We will also

implement our design on physical hardware or in some real

environment and try to remove the limitations that will come

during this process.

REFERENCES

[1]. A. Burns and A. J. Wellings. Real Time Systems and

Programming Languages Addison-Wesley, England, 2001.

[2]. J. W. de Bakker, C. Huizing, W. P. de Roever, and G.

Rozenberg, “Real-Time:Theory in Practice,”Preceedings of

REX Workshop, Mook, The Netherlands, Springer-Verlag

company, June 3-7, 1991.

[3]. G. C. Buttazzo, “Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications,”

Springer, September, 2006.

[4]. M. Joseph, “Real-time Systems: Specification, Verification

and Analysis,” Prentice Hall, 1996.

[5]. P. A. Laplante, “Real-time Systems Design and Analysis, An

Engineer Hand-book,”IEEE Computer Society, IEEE Press,

1993.

[6]. J. A. Stankovic and K. Ramamritham, “Tutorial on Hard

Real-Time Systems,”IEEE Computer Society Press, 1988.

[7]. W. Fornaciari and P. di Milano, “Real Time Operating

Systems Scheduling Lecturer,” www.elet elet.polimi

polimi.it/ fornacia it/ fornacia.

[8]. Sabrian, F., C.D. Nguyen, S. Jha, D. Platt and F. Safaei,

(2005). Processing resource scheduling in programmable

networks. Computer communication, 28:676-687

[9]. Silberschatz, A. P.B. Galvin and G. Gagne (2012), Operating

System Concepts, 8th edition, Wiley India,

[10]. Sun Huajin’, Gao Deyuan, Zhang Shengbing, Wang

Danghui; “ Design fast Round Robin Scheduler in FPGA”, 0-

7803-7547-5/021/$17.00@2002 IEEE

[11]. Yoo, Myungryun and M. Gen, “ Study on Scheduling for

Real- time Task by Hybrid Multiobjective Genetic

Algorithm”, Thesis, 2006

[12]. David B. Stewart, Pradeep Khosla, “Real -Time Scheduling

of Sensor-Based Control Systems”, 1991

[13]. Arezou Mohammadi and Selim G. Akl, “Scheduling

Algorithms for Real-Time Systems”, Technical Report No.

2005-499, July 15, 2005

[14]. Ali Rezaee, Amir Masoud Rahmani, Sahar Adabi, Sepideh

Adabi, “A Fuzzy Algorithm for adaptive multilevel Queue

Management with QoS feedback”, IEEE, pp.121-127, 2011.

[15]. Rakesh Kumar Yadav, Anurag Upadhayay, “A fresh loom for

multilevel feedback queue scheduling algorithm,”

International Journal of Advances in Engineering Sciences,

Vol. 2, pp. 21-23, July 2012.

[16]. Ayan Bhunia, “Enhancing the Performance of Feedback

Scheduling,” International Journal of Computer

Applications, Vol. 18, pp. 11-16, March 2011.

