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Abstract

This paper describes progress on a two dimensional
numerical simulation of acoustic wave propagation
that has been developed to visualize the propagation
of acoustic wave fronts and to provide time-domain
signal. In this exercise, we have simulated propaga-
tion of sound in such a medium using both explicit
and Crank Nicolson finite difference schemes, we have
also tested for stability of the developed schemes us-
ing Vonn Newmann and Matrix stability analysis to-
gether with its associated code in matlab. The stabil-
ity analyses of the developed schemes revealed that
Explicit scheme was conditionally stable while the
Hybrid one (Crank Nicolson Scheme) was uncondi-
tionally stable, for all values of courant number r.
The rate of convergence of the algorithms depend on
the truncation error introduced when approximating
the partial derivatives, the Crank-Nicolson method
converged at the rate of (k2 + h2), which is a faster
rate of convergence than either the explicit method,
or the implicit method.
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1 Introduction

When determining the acoustic properties of an en-
vironment, we are actually interested in the propa-
gation of sound, given the properties and location of
a sound source. Propagation of light or sound wave
is of long standing interest in several branches of ba-
sic and applied physics, from old disciplines such as
x-ray diffraction in crystallography, to the modern
science of photonic crystals. Many problems in nat-
ural environment so involve wave propagation in pe-
riodic media. For example, nearly periodic sand bars
are frequently found in shallow seas outside the surf

zone; their presence changes the wave climate near
the coast. The technology of remote-sensing, either
by underwater sound or by radio waves from a satel-
lite, depends on our understanding of scattering by
the wavy sea surface.
Finite difference method is a key tool in numerical
analysis and the motivation to study and learn this
method is the fact that in Fluid dynamics, thermody-
namics, solid mechanics etc. a large number of differ-
ential equations are found. And to solve all of them
analytically is very difficult and at times impossible.
As a result Finite Difference Methods provide suf-
ficiently satisfactory accurate numerical solutions to
such equations. Finite-difference modelling of wave
propagation in heterogeneous media is a useful tech-
nique in a number of disciplines, including seismology
and ocean acoustics. Sound is a longitudinal wave
that is, waves of alternating pressure deviations from
equilibrium causing local regions of compression and
rarefaction as a result of vibrating objects. Sound is
a wave which can be described as a disturbance that
travels through a medium, transporting energy from
one location to another location.
Many researchers have developed numerical interpre-
tations of the wave equation suited to acoustics and
seismic propagation. Hugh and Pat [13], developed
second order finite difference scheme for modelling
the acoustic wave equation in Matlab but their major
limitation was, insufficient consideration of boundary
conditions. Alford, Kelly and Boore [2], proposed
that acoustic wave equation for homogeneous media
can be approximated in rectangular co-ordinate sys-
tem by the second and fourth order central difference.
Although, one-way wave equation method in inho-
mogeneous media has been extensively studied in the
literature, few detailed studies have been made on
the implementation of source term and free bound-
ary conditions. For this reason, Xie and Wu [29] inte-
grated free surface boundary condition and the source
term for one way elastic waves for decomposition of
plane wave.
Charara and Tarantola [7], in their publication con-
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sidered boundary conditions and source term for one-
way acoustic depth extrapolation and they used a
number of finite difference schemes and techniques
namely, implicit finite difference scheme, central finite
difference schemes and splitting methods. Seongjai
[24], came up with fourth order implicit time step-
ping scheme for numerical solution of the acoustic
wave equation as a variant of the conventional modi-
fied equation method, the scheme incorporated a lo-
cally one-dimensional (LOD) procedure with splitting
error of O(∆t4). Walstijn and Kowalczyk [19], fo-
cused on compact stencil finite difference time domain
(FDTD) scheme for approximating 2D wave equation
in the context of digital audio.
This present work is a finite difference analysis of
two dimensional acoustic wave equation with a signal
function. Further, Von Neumann and matrix stabil-
ity analyses criterion is done.

1.1 Finite Difference Method

The mathematical modelling of practical problems of-
ten involves the use of Partial Differential Equations.
Very few of these equations can be solved analyti-
cally. For the acoustic wave equation described by a
Partial Differential Equation , analytical solutions do
exist but only for special or simple cases like the ho-
mogeneous case. However, for complex or sufficiently
realistic models, it is necessary to resort to numerical
methods.
The finite difference method is one of several tech-
niques for obtaining numerical solutions to practical
problems governed by Partial Differential Equations
(PDE). In all numerical solutions the continuous par-
tial differential equation (PDE) is replaced with a
discrete approximation. In this context, the word
discrete means that the numerical solution is known
only at a finite number of points in the physical do-
main. The number of those points can be selected
by the user of the numerical method. In general, in-
creasing the number of points not only increases the
resolution, but also the accuracy of the numerical so-
lution. The discrete approximation results in a set
of algebraic equations that are evaluated (or solved)
for the values of the discrete unknowns. Figure 1 is
a schematic representation of the numerical solution.
The mesh is the set of locations where the discrete
solution is computed. These points are called nodes,
and if one were to draw lines between adjacent nodes
in the domain the resulting image would resemble a
net or mesh. Two key parameters of the mesh are
∆x&∆z, the local distance between adjacent points
in space, and ∆t, the local distance between adjacent
time steps. For the case considered in this article
∆x and ∆z are uniform throughout the mesh. The
core idea of the finite difference method is to replace
continuous derivatives with difference formulas that
involve only the discrete values associated with po-
sitions on the mesh. Applying the finite difference
method to a differential equation involves replacing

all derivatives with difference formulas. In the wave
equation there are derivatives with respect to time,
and derivatives with respect to space. Using different
combinations of mesh points in the difference formu-
las results in different schemes. In the limit as the
mesh spacing (∆x,∆z) and (∆t) go to zero, the nu-
merical solution obtained with any useful scheme will
approach the true solution to the original differential
equation. However, the rate at which the numerical
solution approaches the true solution varies with the
scheme. In addition, there are some practically use-
ful schemes that can fail to yield a solution for bad
combinations of ∆x,∆z and ∆t.

1.2 Discretization Procedure

In developing the schemes, computational domain Ω
is discretized with uniform grid with assumption that
with uniform grid, both the space and time are ade-
quate for the solution, it implies that (∆x = ∆z = h).
Dividing the domain into a grid of Nx by Nz points,
where ∆x and ∆z are the distance between points
in the grid in the x and z axes respectively, to yield
x = nx∆x and z = nz∆z, where nx = 1, 2, ..., Nx
and nz = 1, 2, ..., Nz . Also, if ∆t is the increment
in time, then t = k∆t where k is the time step with
k = 1, 2, · · · , n. Denoting the discrete approxima-
tion of u(x, z, t) at the grid point ( different points in
space and time) as (xi = i∆x, zj = j∆z, tn = n∆t),
then the acoustic wave field ( numerical solution)
can be specified as u(x, z, t) ≈ uni,j = u(ih, jh, nk),
for all i = 1, 2, 3, · · · , nx, j = 1, 2, 3, · · · , nz and
n = 0, 1, 2, · · ·

1.3 Finite Difference Approximations

Finite difference formulas are first developed with the
dependent variable φ as a function of only one inde-
pendent variable, x, i.e. φ = φ(x). The resulting for-
mulas are then used to approximate derivatives with
respect to either space or time. By initially working
with φ = φ(x), the notation is simplified without any
loss of generality in the result.

1.3.1 First Order Forward Difference

Consider a Taylor series expansion φ(x) about the
point xi

φ(x+∆x) = φ(xi)+∆x
∂φ

∂x
|xi+

∆x2

2

∂2φ

∂x2
|xi+

∆x3

3!

∂3φ

∂x3
|xi+. . . (1)

where ∆x is a change in x relative to xi. Solving for(
∂φ
∂x

)
xi

yields

∂φ

∂x
|xi =

φ(x+ ∆x)− φ(xi)

∆x
−∆x

2

∂2φ

∂x2
|xi−

∆x2

3!

∂3φ

∂x3
|xi+. . . (2)

Notice that the powers of ∆x multiplying the partial
derivatives on the right hand side have been reduced
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by one. Let the approximate solution for the exact
solution, i.e. φi ≈ φ(xi) and φi+1 ≈ φ(xi+∆x), then
equation (2) becomes;

∂φ

∂x
|xi ≈

φi+1)− φi
∆x

−∆x

2

∂2φ

∂x2
|xi−

∆x2

3!

∂3φ

∂x3
|xi+. . . (3)

From the mean value theorem we can have for higher
order derivatives

∆x2

2

∂2φ

∂x2
|xi +

(∆x)3

3!

∂3φ

∂x3
|xi + . . . =

∆x2

2

∂2φ

∂x2
|ε (4)

where xi ≤ ε ≤ xi+1, therefore

∂φ

∂x
|xi ≈

φi+1)− φi
∆x

+
∆x2

2

∂2φ

∂x2
|ε

or equivalently;

∂φ

∂x
|xi −

φi+1)− φi
∆x

≈ ∆x2

2

∂2φ

∂x2
|ε (5)

The term on the right hand side of Equation (5) is
called the truncation error of the finite difference ap-
proximation. It is the error that results from trun-
cating the series in Equation (3).
In general, notice that ε is not known. Furthermore,

since the function φ(x, t) is also unknown, ∂
2φ
∂x2 cannot

be computed. We apply the big O notation to express
the dependence of the truncation error on the mesh
spacing. Note that the right hand side of Equation
(5) contain the mesh parameter ∆x, which is chosen
by the person using the finite difference simulation.
Since this is the only parameter under the user’s con-
trol that determines the error, the truncation error is
simply written

∆x2

2

∂2φ

∂x2
|ε = O(∆x2)

The equals sign in this expression is true in the order
of magnitude sense. In other words its not a strict
equality, but rather, means that the left hand side is a
product of an unknown constant and ∆x2. Although
the expression does not give us the exact magnitude

of ∆x2

2 ((∂
2φ
∂x2 )xi)ε, it tells us how quickly that term

approaches zero as ∆x is reduced.
Using big O notation, Equation (3) can be written

∂φ

∂x
|xi =

φi+1)− φi
∆x

+O(∆x) (6)

Equation (6) is called the forward difference formula
for ∂φ

∂xxi
since it involves nodes xi and xi+1, hence,

forward difference approximation has a truncation er-
ror that is O(∆x). The size of the truncation error
is (mostly) under our control because we can choose
the mesh size ∆x. The part of the truncation error
that is not under our control is ∂φ

∂x |ε.

1.3.2 First Order Backward Difference

An alternative first order finite difference formula is
obtained if the Taylor series like that in Equation (1)

is written with a backward shift (−∆x). Using the
discrete mesh variables in place of all the unknowns,
one obtains

φi−1 = φi−∆x
∂φ

∂x
|xi+

∆x2

2

∂2φ

∂x2
|xi−

(∆x)3

3!

∂3φ

∂x3
|xi+. . .

Notice in this case the alternating signs of terms on
the right hand side. Solving for ∂φ

∂x |xi , we arrive at

∂φ

∂x
|xi =

φi − φi−1

∆x
+

∆x

2

∂2φ

∂x2
|xi −

(∆x)2

3!

∂3φ

∂x3
|xi + . . .

On using big O notation we get

∂φ

∂x
|xi =

φi − φi−1

∆x
+O(∆x) (7)

This is called the backward difference formula because
it involves the values of φ at xi and xi−1.
The order of magnitude of the truncation error for
the backward difference approximation is the same
as that of the forward difference approximation.

1.3.3 First Order Central Difference

Consider the Taylor series expansions for φi+1 and
φi−1 as below;

φi+1 = φi+∆x
∂φ

∂x
|xi+

∆x2

2

∂2φ

∂x2
|xi+

∆x3

3!

∂3φ

∂x3
|xi+. . . (8)

φi−1 = φi−∆x
∂φ

∂x
|xi+

∆x2

2

∂2φ

∂x2
|xi−

(∆x)3

3!

∂3φ

∂x3
|xi+. . . (9)

Subtracting Equation (9) from Equation (8) yields

φi+1 − φi−1 = 2∆x
∂φ

∂x
|xi + 2

(∆x)3

3!

∂3φ

∂x3
|xi . . .

Solving for (∂φ∂x )xi gives

∂φ

∂x
|xi =

φi+1 − φi−1

2∆x
− ∆x2

3!

∂3φ

∂x3
|xi + . . .

which results to;

∂φ

∂x
|xi =

φi+1 − φi−1

2∆x
+O(∆x2) (10)

which is the central difference approximation to (∂φ∂x )xi .
To get good approximations to the continuous prob-
lem generally, small ∆x is chosen. When ∆x << 1,
the truncation error for the central difference approx-
imation goes to zero much faster than the truncation
error in Equation (6) or Equation (7).

1.3.4 Second Order Central Difference

Finite difference approximations to higher order deriva-
tives can be obtained with the additional manipu-
lations of the Taylor Series expansion about φ(xi).
Adding Equation (9) and Equation (8) yields

φi+1+φi−1 = 2φi+(∆x)2 ∂
2φ

∂x2
|xi+

2(∆x)4

4!

∂4φ

∂x4
|xi+. . .
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Solving for
(
∂2φ
∂x2

)
xi

gives;

∂2φ

∂x2
|xi =

φi+1 − 2φi + φi−1

∆x2
− (∆x)2

12

∂4φ

∂x4
|xi + . . .

Using order notation

∂2φ

∂x2
|xi =

φi+1 − 2φi + φi−1

∆x2
+O(∆x2) (11)

This is also called the central difference approxima-
tion, to the second derivative, whereas Equation (11)
is the central difference approximation to the first
derivative

1.4 Discretizing the acoustic equation

Generally in mathematical approach, the continuous
formulation is transformed to a discrete formulation
by replacing derivatives by say finite difference ap-
proximations while discretizing. The idea is to dis-
cretize the problem by choosing a step size h in both
x and z and a step size k in t as in the solution proce-
dure above. Then we try to approximate the acoustic
potential (pressure) u on a grid of points. Therefore,
we replace the continuous problem domain by a grid,
or mesh, of discrete locations on Ω.

Figure 1.1: Computational molecule (stencil) in
(x,z,t) space

The figure below clearly shows schematic repre-
sentation of 2D (x,z,t) operator for discrete domain :

Figure 1.2: Representation in Grid (stencil) in (x,z,t)
space
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2 Numerical schemes

In this section, we develop the two numerical schemes
that we shall use in this study, that is Central Differ-
ence Scheme (explicit) and Crank-Nicolson schemes
(Hybrid) for the model equation

∂2u

∂x2
+
∂2u

∂z2
− 1

c2(x, z)

∂2u

∂t2
= S(x, z, t)

which is a hyperbolic PDE, therefore we first dis-
cretize this equation by using the central difference
approximation to the second derivative in uxx, uzz
and utt

2.1 Central Difference Scheme(CDS)
(Explicit)

Construction of the simple explicit scheme for the
homogeneous 2-dimensional acoustic wave equation
in rectangular coordinate is a fairly straight forward
matter. Namely;

utt = c2 (uxx + uzz) , (2.1)

where S = 0 which means that there is no supply of
energy from the source. To develop explicit scheme
for this equation, we discretize the terms in the homo-
geneous equation governed by (2.1) in the standard
way by defining the central difference operators as
follows:

D2
xu

n
i,j =

uni+1,j − 2uni,j + uni−1,j

(∆x)2

D2
zu
n
i,j =

uni,j+1 − 2uni,j + uni,j−1

(∆z)2

Substituting these operators in equation (2.1), we ar-
rive at:

un+1
i,j = 2uni,j − un−1

i,j + c2k2D2
xu

n
i,j + c2k2D2

zu
n
i,j

Systematic substitution yields;

un+1
i,j − 2uni,j + un−1

i,j

(∆t)2
=

c2

(∆x)2

(
uni+1,j − 2uni,j + uni−1,j

)
+

c2

(∆z)2

(
uni,j+1 − 2uni,j + uni,j−1

)
. (2.2)

We then express un+1
i,j in terms of other terms to give;

un+1
i,j = 2uni,j−un−1

i,j +
c2(∆t)2

(∆x)2

(
uni+1,j − 2uni,j + uni−1,j

)
+

c2(∆t)2(∆z)2
(
uni,j+1 − 2uni,j + uni,j−1

)
(2.3)

subscripts, i, j and superscript n represent the x, z
and time co-ordinates respectively for a discrete grid
of uniform spacing that is ∆x = ∆z and for con-

venience, we introduce the substitution σ =
(
c∆t
∆x

)2
,

this yields;

un+1
i,j = 2uni,j − un−1

i,j + σ
(
uni+1,j − 2uni,j + uni−1,j

)
+

σ
(
uni,j+1 − 2uni,j + uni,j−1

)
. (2.4)

therefore,

un+1
i,j = (2− 4σ)uni,j + σuni+1,j + σuni−1,j+

σuni,j+1 + σuni,j−1 − un−1
i,j . (2.5)

Using the same reasoning we can extend this concept
to non-homogeneous case below

uxx + uzz −
1

c2(x, z)
utt = S(x, z, t)

as
c2i,j

(∆x)2

(
uni+1,j − 2uni,j + uni−1,j

)
+

c2i,j
(∆z)2

(
uni,j+1 − 2uni,j + uni,j−1

)
−(

un+1
i,j − 2uni,j + un−1

i,j

(∆t)2

)
= c2i,jS

n
i,j (2.6)

Again by letting σ =
(
ci,j∆t

∆x

)2

and subscripts, i, j

and superscript n to represent the x, z and time co-
ordinates respectively for a discrete grid of uniform
spacing that is ∆x = ∆z then, collecting the un-
known terms that is un+1

i,j on the left hand side gives;

un+1
i,j = (2− 4σ)uni,j+

σ
(
uni+1,j + uni−1,j + uni,j+1 + uni,j−1

)
− un−1

i,j −

c2i,j∆t
2Sni,j , (2.7)

which is the explicit scheme for the two dimensional
acoustic wave with source term for all
i = 1, 2, 3, . . . ,M − 1; j = 1, 2, 3, · · · , N − 1.

2.2 Crank - Nicolson scheme

In Crank-Nicolson scheme, we replace the spatial co-
ordinates uxx and uzz by the average of each central
difference approximations at nth time level and at
(n+ 1)th time level. These yields in (1.3.2) as

c2i,j
2(∆x)2

[(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

)]
+

c2i,j
2(∆x)2

[(
uni+1,j − 2uni,j + uni−1,j

)]
+

c2i,j
2(∆z)2

[(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

)]
+

c2i,j
2(∆z)2

[(
uni,j+1 − 2uni,j + uni,j−1

)]
−(

un+1
i,j − 2uni,j + un−1

i,j

k2

)
= c2i,j

(
Sni,j + Sn+1

i,j

)
2

(2.8)
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In order to reduce the computing time, we adopt uni-
form grid spacing that is ∆x = ∆z = h and ∆t = k,

now letting r =
c2i,j∆t

2

2∆x2 =
c2i,jk

2

2h2 to give

c2i,jk
2

2h2

[(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

)
+
(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

)]
+

c2i,jk
2

2h2

[(
uni+1,j − 2uni,j + uni−1,j

)
+
(
uni,j+1 − 2uni,j + uni,j−1

)]
−

un+1
i,j + 2uni,j − un−1

i,j = c2i,jk
2

(
Sni,j + Sn+1

i,j

)
2

(2.9)

on collecting unknown terms un+1
i,j on the left hand

side gives the Implicit Crank-Nicolson scheme

−run+1
i+1,j+(1+4r)un+1

i,j −ru
n+1
i−1,j−ru

n+1
i,j+1−ru

n+1
i,j−1 =

runi+1,j+(2−4r)uni,j+ru
n
i−1,j+ru

n
i,j+1+runi,j−1−un−1

i,j −

c2i,jk
2

(
Sni,j + Sn+1

i,j

)
2

, (2.10)

for all
i = 1, 2, 3, · · · ,M − 1 and j = 1, 2, 3, · · · , N − 1
Taking S to be a space function of x and z but not
a function of time(t), then Sni,j = Sn+1

i,j , our Implicit
Crank-Nicolson equation reduces to

−run+1
i+1,j+(1+4r)un+1

i,j −ru
n+1
i−1,j−ru

n+1
i,j+1−ru

n+1
i,j−1 =

runi+1,j+(2−4r)uni,j+ru
n
i−1,j+ru

n
i,j+1+runi,j−1−un−1

i,j −

c2i,jk
2Sni,j (2.11)

for all i = 1, 2, 3, · · · ,M−1; and j = 1, 2, 3, · · · , N−1

3 Results

Accuracy and Stability analysis

3.1 Matrix stability of Explicit scheme

Matrix stability method considers the finite differ-
ence representation of both the PDE and boundary
condition in a matrix form for which eigenvalue anal-
ysis is used to study stability, the theory behind this
method is that the modulus of the eigenvalues of the
amplification matrix should be less than unity. Em-
ploying matrix method to analyze stability of the
scheme (2.7)and expanding this scheme by taking
i = 1, 2, 3, . . . ,M − 1; j = 1, 2, 3, . . . , N − 1, and
r = σ = (

ci,j∆t
∆x )2, generates the system of equations

(see appendix) which can be expressed in matrix form
as

Un+1
i,j = AUni,j − Un−1

i,j + b,

where

un+1
i,j =



u1,1

u2,1

...
u1,2

...
uM−1,N−1



n+1

A =


(2− 4r) r · · · r

r (2− 4r) r · · · r
...

. . .
. . . · · ·

...
· · · r · · · r (2− 4r)



uni,j =



u1,1

u2,1

...
u1,2

...
uM−1,N−1



n

b =

 run0,1 + run1,0 + run0,1 − c21,1k2Sn1,1
run2,0 − c22,1k2Sn2,1

...


and

un−1
i,j =



u1,1

u2,1

...
u1,2

...
uM−1,N−1



n−1

We realise some pattern and the resulting matrix
[(M − 1)× (N − 1)]× [(M − 1)× (N − 1)] is of block-
tridiagonal form as

G =


C D
B C D

. . .
. . .

. . .

B C,


where B,C and D are (M − 1) × (M − 1) matrices,
and there are N such C matrices on the diagonal. For
this case, B and D are diagonal matrices whereas C
is tridiagonal,

C =


(2− 4r) r

r (2− 4r) r
. . .

. . .
. . .

r (2− 4r)

 ,

B = D =


r

r
. . .

r


Since C is tridiagonal matrix which is symmetric pos-
itive definite and is diagonally dominant, then C is
non-singular thus there is a unique solution. The
symmetry then implies that we have both a neces-
sary condition for stability, therefore this scheme will
always be stable for restricted values of r.

3.2 Von Neumann stability of Explicit
scheme (CDS)

The von Neumann stability analysis is a way to deter-
mine when a particular numerical method is stable.
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It looks at solutions of the form anj = ξneijkh, where

i =
√
−1, j is our spatial index, k is the time index,

and h is the spatial step. To do the analysis using
this method, we simply substitute the above solution
into the discretized form of the numerical method and
determine where | ξ |2≤ 1. This tells us whether the
amplitude of the wave is less than or equal to one. If
the amplitude is greater than one, then the amplitude
is increasing and will therefore eventually become un-
stable. Thus the method is stable at the values where
| ξ |2≤ 1. In general, the Von Neumanns procedure
introduces an error represented by a finite Fourier se-
ries and examines how this error propagates during
the solution.
Stability being independent of source term, now get-
ting the stability of explicit scheme using Von Neu-
mann’s method, we set S = 0 in the explicit scheme
(2.7) to give the homogeneous equation;

un+1
i,j = (2− 4σ)uni,j+

σ
(
uni+1,j + uni−1,j + uni,j+1 + uni,j−1

)
− un−1

i,j (3.1)

Then using the fact that the solution of this con-
stant coefficient differential equation is satisfied by
the Fourier harmonics

Uni,j = ξneiβmheiγlh.

where
β is time index in x
γ is time index in z
h is spatial step in x and z
m is spatial index in x
and l is spatial index in z.
Substituting in the homogeneous scheme (3.1), we get

ξn+1eiβmheiγlh = (2− 4σ)ξneiβmheiγlh+

σ
[
ξneiβ(m+1)heiγlh + ξneiβ(m−1)heiγlh

]
+

σ
[
ξneiβmheiγ(l+1)h + ξneiβmheiγ(l−1)h

]
−

ξn−1eiβmheiγlh (3.2)

so that on dividing equation (3.2) by ξneiβmheiγlh,
we have;

ξ = (2− 4σ) + σ
[
eiβh + e−iβh + eiγh + e−iγh

]
− ξ−1

But 2 cos θ = eiθ + e−iθ which reduces this equation
to

ξ = (2−4σ)+σ

[
2(1− 2 sin2 βh

2
) + 2(1− 2 sin2 γh

2
)

]
−ξ−1 (3.3)

then;

ξ2 − 2

[
1− 2σ(sin2 βh

2
+ sin2 γh

2
)

]
ξ + 1 = 0

we then let g =
[
1− 2σ(sin2 βh

2 + sin2 γh
2 )
]
, to

get;
ξ2 − 2gξ + 1 = 0,

where the ith eigenvalue is given by

ξi = g ±
√
g2 − 1

Therefore, for stability, | ξi |≤ 1; i = 1, 2, · · · , N ,
this implies

−1 ≤ 1− 2σ(sin2 βh

2
+ sin2 γh

2
) ≤ 1

which has non-trivial solution when
1− 2σ(sin2 βh

2 + sin2 γh
2 ) ≥ −1,

for this we get;

σ(sin2 βh

2
+ sin2 γh

2
) ≤ 1,

since the maximum value of sin2 βh
2 is unity, our

equation reduces to σ ≤ 1
2 as stability condition.

Therefore, convergence of the scheme follows the Courant
et al. (1928) (C.F.L.) condition for convergence, which
applies to explicit difference replacement of hyper-
bolic equations. It requires that (3.1) to be conver-
gent when 0 ≤ σ ≤ 1

2 . Thus, the stability condition
coincides with the C.F.L. condition.

Crank-Nicolson scheme (Hybrid)

3.3 Matrix stability of Crank-Nicolson
scheme

Similarly, we adopt the matrix method to analyze
stability of the Crank-Nicolson scheme (2.11). We
expand this scheme by taking
i = 1, 2, 3, · · · ,M − 1; j = 1, 2, 3, · · · , N − 1, to
get the system of equations which we can express in
matrix form as

(1 + 4r) −r · · · −r
−r (1 + 4r) −r · · ·
...

. . .
. . .

...
−r · · · −r (1 + 4r)

−r · · · (1 + 4r)




u1,1

u2,1

...
u1,2

...
uM−1,N−1



n+1

=


(2− 4r) r · · · r

r (2− 4r) r · · · r
...

. . .
. . .

. . .
...

r · · · r (2− 4r) r
r · · · r (2− 4r)
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u1,1

u2,1

...
u1,2

...
uM−1,N−1



n

+



run+1
0,1 + run+1

1,0 + run0,1 + run1,0 − un−1
1,1 − k2Sn1,1

run+1
2,0 + run2,0 − un−1

2,1 − k2Sn2,1
...

run+1
0,2 + run0,2 − un−1

1,2 − k2Sn1,2
...

 .

Which we can express in matrix form as

AUn+1
i,j = BUni,j + C

Un+1
i,j = (A−1B)Uni,j + A−1C · · · (3.3a)

A and B are block tridiagonal matrices. Thus, equa-
tion (3.3a) may be put in the form

(I − rAN−1)Un+1
i,j = (2I + rAN−1)Uni,j + D,

where

AN−1 =



−4 1 0 · · · 0
1 −4 1 · · · 0

0 1 −4 1
...

...
. . . · · · 1 −4

0 · · · 0 · · · −4


I is an (N − 1)× (N − 1) identity matrix. Thus,

Un+1
i,j =

[
(2I + rAN−1)(I − rAN−1)−1

]
Uni,j + E,

where D = A−1C and E = C(I − rAN−1)−1.
In simpler form we write this equation as

Un+1
i,j = PUni,j + E

In this case, P = (2I + rAN−1)(I − rAN−1)−1 is
the amplification matrix, and the stability condition
is that absolute value of the eigenvalues of the am-
plification matrix should be less than or equal to 1,
that is | λi |≤ 1. Since our Equation (2.11) is implicit
and A and B are block tridiagonal matrices which are
symmetric positive definite and are weakly diagonally
dominant, then A and B are non-singular thus there
is a unique solution, the symmetry then implies that
we have both necessary and sufficient condition for
stability, therefore this scheme will always be stable
for all values of r since r has no restrictions (uncon-
ditionally stable).

3.4 Von Neumann stability of Crank-
Nicolson scheme

To get stability of Crank Nicolson via this method,
we set S = 0 since stability is independent of source
term, then substitute Uni,j = ξneiβmheiγlh in the ho-
mogeneous equation (2.11)

−run+1
i+1,j+(1+4r)un+1

i,j −ru
n+1
i−1,j−ru

n+1
i,j+1−ru

n+1
i,j−1 =

runi+1,j+(2−4r)uni,j+ru
n
i−1,j+ru

n
i,j+1+runi,j−1−un−1

i,j ,
(3.4)

which yields

−rξn+1eiβ(m+1)heiγlh + (1 + 4r)ξn+1eiβmheiγlh−

rξn+1eiβ(m−1)heiγlh − rξn+1eiβmheiγ(l+1)h

−rξn+1eiβmheiγ(l−1)h = rξneiβ(m+1)heiγlh+

(2− 4r)ξneiβmheiγlh + rξneiβ(m−1)heiγlh+

rξneiβmheiγ(l+1)h+rξneiβmheiγ(l−1)h−ξn−1eiβmheiγlh

(3.5)
Again dividing (3.5) by ξneiβmheiγlh, we obtain

(1 + 4r)ξ − rξ(eiβh + e−iβh)− rξ(eiγh + e−iγh) =

(2−4r)+r(eiβh+e−iβh)+r(eiγh+e−iγh)−ξ−1 (3.6)

Recall that cos θ = 1 − 2 sin2 θ
2 = eiθ+e−iθ

2 , therefore
using this fact in (3.6), yields

(1+4r)ξ−rξ
(

2(1− 2 sin2 βh

2
) + 2(1− 2 sin2 γh

2
)

)
=

(2−4r)+r

(
2(1− 2 sin2 βh

2
) + 2(1− 2 sin2 γh

2
)

)
− 1

ξ

After rearrangement, we get

ξ2

[
1 + 4r(sin2 βh

2
+ sin2 γh

2
)

]

−ξ
[
2− 4r(sin2 βh

2
+ sin2 γh

2
)

]
+ 1 = 0

which has a non-trivial solution when −1 ≤ ξi ≤ 1,
where ξi is the magnification factor corresponding to
eigenvalue, thus;

ξi =
2− 4r(sin2 βh

2 + sin2 γh
2 )

2 + 8r(sin2 βh
2 + sin2 γh

2 )
≤ 1

Now for | ξi |≤ 1, we have sin2 βh
2 = 1 and

sin2 γh
2 = 1, therefore

ξi =
1− 4r

1 + 8r

Hence for stability r > 0, which makes ξi less than
unity for all values of r implying unconditional sta-
bility throughout.
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Analysis and Software

In this section we present an analysis of the numerical
experiments. We also present and discuss the results
obtained from these methods. We shall display these
results using three- dimensional figures and graphs.

From the initial condition

ut(x, z, 0) = 0

But since ut is approximated using central difference
i.e. (??), then central difference analogue of ut yields

ut ≈
un+1
i,j − u

n−1
i,j

2k
= 0

Taking n = 0, from initial condition we find

ut ≈
u0+1
i,j − u

0−1
i,j

2k
= 0,

where
k = ∆t

Implying that
u1
i,j = u−1

i,j

Again, from the initial condition, u(x, z, 0) = (sinπx)(sinπz),
we get that

u(x, z, 0) ≈ u0
i,j = (sinπx)(sinπz)

At this point we developed a Matlab program that
could give the pressure field as a function of x and z
at varying time levels and results have been plotted
for both equation (2.7) and (2.11).

Figure 3.1: Numerical solution explicit scheme at
c=1500,dt=0.5

Figure 3.2: Numerical solution Crank Nicolson
scheme at c=1500,dt=0.5
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Figure 3.3: numerical solution of explicit scheme at
t=10,c=1500.dt=0.5

Figure 3.4: numerical solution of Crank Nicolson
scheme at t=10,c=1500.dt=0.5

4 Discussions

In reality, sound propagation in elastic medium is
damped, the amplitude of the pressure of the sound
wave decreases with increasing distance from the sound
source. Our results from the two numerical schemes
(CDS) and (CNS) are confirming this since the dis-
placement of the particles given by u(x, z, t) is de-
creasing with an increase in the distance from the
source (in this case t=0). The efficacy of a finite dif-
ference scheme is achieved with the increase of the
grid points involved hence the increase in the accu-
racy of a finite difference scheme. In addition, the
speed of sound reduces with increase in the distance
from the source, this is evidenced by the reduction
of the ripples as the propagation advances away from
source see figure 4.1.3.

Conclusions

This study focussed on the second order acoustic equa-
tion with a signal function. Two numerical schemes
namely Central Difference Scheme (Explicit scheme)
and Hybrid scheme (Crank Nicolson Scheme) were

Figure 3.5: Numerical solution explicit scheme at
c=1000,dt=0.8

Figure 3.6: Numerical solution Crank Nicolson
scheme at c=1000,dt=0.8

developed and used in this study. The stability anal-
yses of the developed schemes revealed that Explicit
scheme was conditionally stable while the Hybrid one
(Crank Nicolson Scheme) was unconditionally stable,
for all values of courant number r.
The rate of convergence of the algorithms depends on
the truncation error introduced when approximating
the partial derivatives, the Crank-Nicolson method
converges at the rate of (k2 + h2), which is a faster
rate of convergence than either the explicit method,
or the implicit method. Further, since c is a function
of (x, z), from the results it suffices to use the maxi-
mum sound velocity in the model.
The smaller the mesh sizes, the more finely the re-
sults, this makes the grid more finer thus improving
the approximation around the boundary but at the
cost of strongly increased computational time as evi-
denced by figures (4.1.5, 4.1.6).

5 Recommendations

We wish to recommend that further research can be
undertaken to;
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Figure 3.7: Numerical solution explicit scheme at
t=5,c=0.5,dt=0.5

(1).png

Figure 3.8: Numerical solution Crank Nicolson
scheme at t=5,c=0.5,dt=0.5

(i) Explore numerical solution to this problem us-
ing other methods like finite element and com-
pare results.

(ii) Try out an analytical method via green’s func-
tion.
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6 Appendix

6.1 Matrix Generation

Set one, j = 1;

un+1
1,1 = run2,1 + (2− 4r)un1,1 + run0,1 + run1,2 + run1,0 − c21,1(∆t)2Sn1,1 − un−1

1,1

un+1
2,1 = run3,1 + (2− 4r)un2,1 + run1,1 + run2,2 + run2,0 − c22,1(∆t)2Sn2,1 − un−1

2,1

un+1
3,1 = run4,1 + (2− 4r)un3,1 + run2,1 + run3,2 + run3,0 − c23,1(∆t)2Sn3,1 − un−1

3,1

... =
...

...

un+1
M−1,1 = runM,1 + (2− 4r)unM−1,1 + runM−2,1 + runM−1,2 + runM−1,0−

c2M−1,1(∆t)2SnM−1,1 − un−1
M−1,1

In set two, we set j = 2 to generate the systems of equations

un+1
1,2 = run2,2 + (2− 4r)un1,2 + run0,2 + run1,3 + run1,1 − c21,2(∆t)2Sn1,2 − un−1

1,2

un+1
2,2 = run3,2 + (2− 4r)un2,2 + run1,2 + run2,3 + run2,1 − c22,2(∆t)2Sn2,2 − un−1

2,2

un+1
3,2 = run4,2 + (2− 4r)un3,2 + run2,2 + run3,3 + run3,1 − c23,2(∆t)2Sn3,2 − un−1

3,2

... =
...

...

un+1
M−1,2 = runM,2 + (2− 4r)unM−1,2 + runM−2,2 + runM−1,3 + runM−1,1−

c2M−1,2(∆t)2SnM−1,2 − un−1
M−1,2

Continuing in the same trend, we set j = 3 to give

un+1
1,3 = run2,3 + (2− 4r)un1,3 + run0,3 + run1,4 + run1,2 − c21,3(∆t)2Sn1,3 − un−1

1,3

un+1
2,3 = run3,3 + (2− 4r)un2,3 + run1,3 + run2,4 + run2,2 − c22,3(∆t)2Sn2,3 − un−1

2,3

un+1
3,3 = run4,3 + (2− 4r)un3,3 + run2,3 + run3,4 + run3,2 − c23,3(∆t)2Sn3,3 − un−1

3,3

... =
...

...

un+1
M−1,3 = runM,3 + (2− 4r)unM−1,3 + runM−2,3 + runM−1,4 + runM−1,2−

c2M−1,3(∆t)2SnM−1,3 − un−1
M−1,3

Setting j = 4 yields

un+1
1,4 = run2,4 + (2− 4r)un1,4 + run0,4 + run1,5 + run1,3 − c21,4(∆t)2Sn1,4 − un−1

1,4

un+1
2,4 = run3,4 + (2− 4r)un2,4 + run1,4 + run2,5 + run2,3 − c22,4(∆t)2Sn2,4 − un−1

2,4

un+1
3,4 = run4,4 + (2− 4r)un3,4 + run2,4 + run3,5 + run3,3 − c23,4(∆t)2Sn3,4 − un−1

3,4

un+1
4,4 = run5,4 + (2− 4r)un4,4 + run3,4 + run4,5 + run4,3 − c24,4(∆t)2Sn4,4 − un−1

4,4

... =
...

...

un+1
M−1,4 = runM,4 + (2− 4r)unM−1,4 + runM−2,4 + runM−1,5 + runM−1,3−

c2M−1,4(∆t)2SnM−1,4 − un−1
M−1,4
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This process is continued until i = (M − 1), j = (N − 1) as below

un+1
1,N−1 = run2,N−1 + (2− 4r)un1,N−1 + run0,N−1 + run1,N + run1,N−2−

c21,N−1(∆t)2Sn1,N−1 − un−1
1,N−1

un+1
2,N−1 = run3,N−1 + (2− 4r)un2,N−1 + run1,N−1 + run2,N + run2,N−2−

c22,N−1(∆t)2Sn2,N−1 − un−1
2,N−1

un+1
3,N−1 = run4,N−1 + (2− 4r)un3,N−1 + run2,N−1 + run3,N + run3,N−2−

c23,N−1(∆t)2Sn3,N−1 − un−1
3,N−1

... =
...

...

un+1
M−1,N−1 = runM,N−1 + (2− 4r)unM−1,N−1 + runM−2,N−1 + runM−1,N + runM−1,N−2−

c2M−1,N−1(∆t)2SnM−1,N−1 − un−1
M−1,N−1

6.2 Matlab Programme
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