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I.    PRELIMINARIES 

A) Notation and Terminology 

In this paper, we shall represent the following notations as: 

i
- sum over i; Sn- Symmetric group of degree n and 

order n!; An – an alternating group of degree n and order n!/2; 

G -The order of a group G; HG : -Index of H in G; X
(3)

 – 

The set of an unordered triples from the set    X = { 1,2,3,---,n 

}; X
[3]

 – The set of an ordered triple from set X = { 1,2,3,---,n 

}; {a,b,c}-An unordered triple; [a,b,c] – An ordered triple. 

We also define some basic terminologies on permutation 

group and give some results on group actions as:     

Definition 1.1.1  

Let X be a set. A group G acts on the left of X if for each 

gG and each xX there corresponds a unique element 

gxX such that: 

i)   (g1g2) = g1(g2x),  g1,g2G and xX. 

ii)     For any xX, 1x=x, where 1 is the identity in G. 

The action of G from the right on X can be defined in a 

similar way. In fact it is merely a matter of taste whether one 

writes the group elements on the left or on the right. 

Definition 1.1.2 

Let G act on a set X. Then X is partitioned into disjoint 

equivalent classes called orbits or transitivity classes of the 

action. For each xX the orbit containing x is called the orbit 

of x and is denoted by orbG (x). 

Definition 1.1.3 

Let G act on a set X and let xX. The stabilizer of x in G, 

denoted by stabG(x) is given by stabG(x) = {gG│gx=x}. 

Note: stabG(x) forms a subgroup of G which is also called 

the isotropy group of X. This subgroup is also denoted by Gx. 

Definition 1.1.4 

Let G act on a set X. The set of elements of X fixed by 

gG is called the fixed point set of g and is denoted by 

Fix(g). Thus Fix(g)={xX│gx=x}. 

Definition 1.1.5 

If the action of a group G on a set X has only one orbit, then 

we say that G acts transitively on X. In other words, G acts 

transitively on X if for every pair of points x,y X, there 

exists gG such that gx=y.  

Definition 1.1.6 

Let X be a non-empty set. A permutation of X is a one-to-

one mapping of X onto itself. 

Theorem 1.1.7 [Orbit-Stabilizer Theorem] [Rose 1978] 

Let G act on a set X and let xX, then │orbG(x)│=│G : 

stabG(x)│. 

Theorem 1.1.8 [Cauchy-Frobenius Lemma] [Harary 1969] 

Let G be a finite group acting on a set X. The number of 

orbits of G is:    

             1     
Gg

│Fix(g)│. 

          │G│            

This theorem is usually but erroneously attributed to 

Burnside (1911) cf. Neumann (1977). 

Theorem 1.1.9 [Krishnamurthy 1985] 

Two permutations in An are conjugate if and only if they 

have the same cycle type, and if gϵG has cycle type 

(α1,α2,…,αn), then the number of permutations in An conjugate 

to g is:                 

                                n!           . 

                      


n

i 1

 i
 ! i
 i   

 

Definition 1.1.10 

Let X be the set {1,2,---,n}, then the symmetric group of 
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degree n is the group of all the permutations of X under the 

binary operation of composition of maps. It is denoted by Sn 

and has order n!. 

Definition 1.1.11   

The subgroup of Sn consisting of all the even permutations 

is called the alternating group. The group is denoted by An.  

The order of An   is  
2

!n
 . 

Definition 1.1.12 

If a finite group G acts on a set X with n elements, each 

gG corresponds to a permutation δ of X, which can be 

written uniquely as a product of disjoint cycles. If δ has α1 

cycles of length1, α2 cycles of length 2,---,αn cycles of length 

n, then we say that δ and hence g has cycle type   (α1,α2,---

,αn). 

B) Introduction 

In 1970, Higman computed the rank and the subdegrees of 

the symmetric group Sn acting on pairs from the set X= {1, 2, 

3,… ,n}. He found out that the rank is three and the 

subdegrees are; 1, 2(n-2),    n - 2  . 

                                           2 

In 1972, Cameron [1] worked on suborbits of multiply 

transitive permutation groups and later in 1974, he studied 

suborbits of primitive groups. In 1999, Rosen [5] dealt with 

the properties arising from the action of a group on unordered 

and ordered pairs. Based on these results, we investigate some 

properties of the action of An on X
(3)  

the set of all unordered 

triples from the set X = {1,2,3,---,n} and on X
[3] 

 the set of all 

ordered triples from the set X = {1,2,3,---,n}. 

The alternating group An acts on the set X
(3)

 by the rule, 

g{x,y,z}={gx,gy,gz} gAn and {x,y,z}  X
(3)

.  

II.    ACTION OF THE ALTERNATING GROUP An 

ON UNORDERED TRIPLES 

A) Some general results of permutation groups acting on 

X
(3) 

We first give the proofs of two lemmas which will be very 

useful in the investigation of the action of An on X
(3)

 

Lemma 2.1.1: Let G be the alternating group An acting on the 

set X = {1,2,3,---,n} and gϵG have cycle type  (α1,α2,---,αn). 

Then the number of elements in X
(3)

 fixed by g is given by the 

formula: 

                        │Fix(g) │  =     α1 +  

                                                   3 

 

                           α2α1+α3, where α1≥3.                                                               

Proof: 

Let gAn have cycle type (α1,α2,---,αn). Then {a,b,c}  

X
(3) 

is fixed by g if each of a,b and c come from a single cycle 

in g or one of a, b or c come from a single cycle in g and the 

other two come from a 2-cycle in g or a, b, c come from a 3-

cycle in g. From the first case, the number of unordered 

triples fixed by g is    α1  . 

                      3 

From the second case, the number of unordered triples fixed 

by g is α2α1 and in the third case the number of unordered 

triples fixed by g is α3. Therefore, the number of unordered 

triples fixed by:  

g is     

 α1  
+ α2α1+α3. 

 3  

 

Lemma 2.1.2: Let G be the alternating group An acting on 

the set X = {1,2,3,---,n} and gϵG have cycle type  (α1,α2,---

,αn). Then the number of permutations in An fixing {a,b,c}   

X
(3) 

 and having the same cycle type as g is given by: 

  

                 (n-3)!                    
                               

                                                

                                                  + 

(α1-3)! 1 31    


n

i 2

 i
 ! i
 i                                    

 

                   

3(n-3)!                                                                                   

                                                       +                                        

(α1-1) ! 1 11  (α2-1)!  2 12   


n

i 3

 i
 ! i
 i  

 

2(n-3)! 

 

α1! 1
1  α2! 2

 2  (α3-1)! 3 13  


n

i 4

 i ! i i                                                
  

 

where α1≥3, α2≥1, α3≥1. 

Proof:       

A permutation gAn fixes an unordered triple say 

{a,b,c}X
(3)

 as in the following cases; 

Case1: 

If g maps each element a, b and c onto itself, that is each of 

the elements a, b and c comes from a single cycle. To get the 

number of permutations in An that fix {a, b, c} and having the 

same cycle type as g, we apply Theorem 1.1.9 to a 

permutation in An-3 with cycle type (α1-3,α2,α3,---,αn) to get 

        

(n-3)!                                                                                                                                                 

                                                                                                       

(α1-3)! 1
31    



n

i 2

 i
 ! i
 i  

Case 2: 

If one of the elements a, b and c comes from a single cycle 

and the other two come from a 2-cycle. In this case, a, b and c 

may come from any of the following three permutations; (ab) 

(c) ---, (ac) (b) --- or (bc) (a) ---. Applying Theorem 1.1.9 to a 

permutation of An-3 with cycle type (α1-1,α2-1,α3,α4,---,αn ), 

we get, 
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                     (n-3)!                                                                 

(α1-1) ! 1 11  (α2-1)!  2 12   


n

i 3

 i
 ! i i  

                                                            
          

                                                     

Considering the three cases above, we get in total                                                                                            

                                                    

                    3 (n-3)!                                                                         

(α1-1) ! 1 11  (α2-1)!  2 12   


n

i 3

 i
 ! i i  

                                                    

                                                             
   
                                                   

Case 3: 

If the elements a, b and c come from a 3-cycle in g. In this 

case a, b and c may come from the permutation (abc) or (acb). 

Applying Theorem 1.1.9 to a permutation of An-3 with cycle 

type (α1, α2, α3-1, α4,---,αn), we get,    

                              

(n-3)! 

                                                                              

α1! 1
α1

 α2! 2
 2  (α3-1)! 3 13   



n

i 4

 i
 ! i
 i     

 

 

Combining the two cases above, we get 

 

                                   2(n-3)! 

                           permutations. 

α1! 1
α1

 α2! 2 2  (α3-1)! 3 13   


n

i 4

 i
 ! i i      

  

Combining cases (1), (2) and (3) we get the required result. 

 

B) Some properties of the action of G =  A5 on X
(3)

    

The alternating group A5 is a subgroup of S5 containing all 

even permutations and has order    5A  =
2

!5
= 60. 

The cardinality of X
(3)

  is      5     = 10. 

                                 3 

Theorem 2.2.1 

A5 acts transitively on X
(3)

.  

Proof :  

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A5 on X
(3)

 has only one orbit. Let the cycle type of gA5 

be (α1,α2,---,αn). Then the number of permutations in A5 with 

the same cycle type as g is given by: 

Theorem 1.1.9. The number of elements in X
(3)

 fixed by each 

gA5 is given by Lemma 2.1.1. We now have the following 

Table 2.2.1. 

 

 

 

 

Table 2.2.1: Permutations in A5 and the number of fixed points 

 

       

We now apply the Cauchy- Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A5 on X
(3)

  

         1     
Gg

│Fix(g)│    = 
60

1
[(1 x 10) + (20 x  

    │A5│ 

 

1) + (24 x 0) + (15 x 2)  =1. 

      

Thus A5 acts transitively on X
(3)

 . 

We can also show that A5 acts transitively on X
(3) 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

{1,2,3}  X
(3)

 and the set X
(3)

 are equal, which implies that 

the action of G = A5  on  X
(3) 

has only one orbit.  Using Lemma 

2.1.2 we have the following Table 2.2.2. 

 

Table 2.2.2: Number of permutations in stabG {1,2,3} 

 

 

From the third column, we see that: 

│StabG{1,2,3}│= 1 + 2 + 0 + 3 = 6. 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG{1,2,3}│= [G: StabG{1,2,3}]. 

    =      │G│         =
6

60
 =  10                       

│StabG{1,2,3 │ 

                             =│X
(3)

│ 

 

Hence A5 acts transitively on X
(3)

. 

 C) Some properties of the action of G =  A6 on X
(3)

    

The alternating group A6 is a subgroup of S6 containing all 

Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X(3) 

1 (5,0,0,0,0) 1 10 

(abc) (2,0,1,0,0) 20 1 

(abcde) (0,0,0,0,1) 24 0 

(ab) (cd) (1,2,0,0,0) 15 2 

Permutation type Cycle type 

Number of 

permutations in stabG 

{1,2,3} 

1 (5,0,0,0,0) 1 

(abc) (2,0,1,0,0) 2 

(abcde) (0,0,0,0,1) 0 

(ab) (cd) (1,2,0,0,0) 3 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 6, NO. 7, JULY 2015 

[ISSN: 2045-7057]                                                               www.ijmse.org                                                                             24 

even permutations and has order    6A  =
2

!6
= 360. 

The cardinality of X
(3)

  is      6     = 20. 

                                 3 

Theorem 2.3.1 

A6 acts transitively on X
(3)

. 

Proof: 

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A6 on X
(3)

 has only one orbit. Let the cycle type of gA6 

be (α1,α2,---,αn). Then the number of permutations in A6 with 

the same cycle type as g is given by Theorem 1.1.9. The 

number of elements in X
(3)

 fixed by each gA6 is given by 

Lemma 2.1.1. We now have the following Table 2.3.1.  
 

 

Table 2.3.1: Permutations in A6 and the number of fixed points 

 

Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X(3) 

1 (6,0,0,0,0,0) 1 20 

(abc) (3,0,1,0,0,0) 40 2 

(abcde) (1,0,0,0,1,0) 144 0 

(ab) (cd) (2,2,0,0,0,0) 45 4 

(abc) (def) (0,0,2,0,0,0) 40 2 

(ab) (cdef) (0,1,0,1,0,0) 90 0 

 

We now apply the Cauchy- Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A6 on X
(3)

  

   

 1       
Gg

│Fix(g)│  =
360

1
 [ ( 1 x 20) + (40 x 2)  

│G│      + (144 x 0) + ( 45 x 4 ) + ( 40 x 2 )  + ( 90 x 0 ) ] = 1. 

│G│ 

Thus A6 acts transitively on X
(3)

. 

We can also show that A6 acts transitively on X
(3) 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

{1,2,3}  X
(3)

 and the set X
(3)

 are equal, which implies that 

the action of G = A6  on  X
(3) 

has only one orbit.  Using Lemma 

2.1.2 we have the following Table 2.3.2. 

 
Table 2.3.2: Number of permutations in stabG {1,2,3} 

 

Permutation type Cycle type 

Number of 

permutations in 

stabG {1,2,3} 

1 (6,0,0,0,0,0) 1 

(abc) (3,0,1,0,0,0) 4 

(abcde) (1,0,0,0,1,0) 0 

(ab) (cd) (2,2,0,0,0,0) 9 

(abc) (def) (0,0,2,0,0,0) 4 

(ab) (cdef) (0,1,0,1,0,0) 0 

 

From the third column, we see that  

│StabG{1,2,3}│= 1 + 4 + 0 + 9 + 4 + 0 = 18 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG{1,2,3}│= [G: StabG{1,2,3}]. 

                             =      │G│              =
18

360
 =   

                        │StabG{1,2,3}│ 

                                                        20 =│X
(3)

│. 

 

Hence A6 acts transitively on X
(3)

. 

 

D) Some properties of the action of G =  A7 on X
(3)

    

The alternating group A7 is a subgroup of S7 containing all 

even permutations and has order    7A  =
2

!7
= 2520. 

The cardinality of X
(3)

  is      7     = 35. 

                                 3 

Theorem 2.4.1 

A7 acts transitively on X
(3)

 . 

Proof: 

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A7 on X
(3)

 has only one orbit. Let the cycle type of gA7 

be (α1,α2,---,αn). Then the number of permutations in A7 with 

the same cycle type as g is given by Theorem 1.1.9. The 

number of elements in X
(3)

 fixed by each gA7 is given by 

Lemma 2.1.1. We now have the following Table 2.4.1. 

 
Table 2.4.1: Permutations in A7 and the number of fixed points 

 
Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X(3) 

1 (7,0,0,0,0,0,0) 1 35 

(abc) (4,0,1,0,0,0,0) 70 5 

(abcde) (2,0,0,0,1,0,0) 504 0 

(abcdefg) (0,0,0,0,0,0,1) 720 0 

(ab) (cd) (3,2,0,0,0,0,0) 105 7 

(ab) (cd) (efg) (0,2,1,0,0,0,0) 210 1 

(abc) (def) (1,0,2,0,0,0,0) 280 2 

(ab) (cdef) (1,1,0,1,0,0,0) 630 1 

 

We now apply the Cauchy- Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A7 on X
(3)

  

  1    
Gg

│Fix(g)│         

  │A7│ 
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=
2520

1
[(1X35)+(70X5)+(504X0)+(720X0)+(105X7)+(210

X1)+(280X2)+(630X1)] = 1. 

   Thus A7 acts transitively on X
(3)

. 

We can also show that A7 acts transitively on X
(3) 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

{1,2,3}  X
(3)

 and the set X
(3)

 are equal, which implies that 

the action of G = A7  on  X
(3) 

has only one orbit.  Using Lemma 

2.1.2 we have the following Table 2.4.2. 

 
Table 2.4.2: Number of permutations in stabG {1,2,3} 

 

Permutation 

type 
Cycle type 

Number of 

permutations in 

stabG {1,2,3} 

1 (7,0,0,0,0,0,0) 1 

(abc) (4,0,1,0,0,0,0) 10 

(abcde) (2,0,0,0,1,0,0) 0 

(abcdefg) (0,0,0,0,0,0,1) 0 

(ab) (cd) (3,2,0,0,0,0,0) 21 

(ab) (cd) (efg) (0,2,1,0,0,0,0) 6 

(abc) (def) (1,0,2,0,0,0,0) 16 

(ab) (cdef) (1,1,0,1,0,0,0) 18 

 

From the third column, we see that  

│StabG{1,2,3}│= 1 + 10 + 0 + 0 + 21 + 6 + 16 + 18 = 72 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG{1,2,3}│= [G: StabG{1,2,3}]. 

                              =        │G│         =
72

2520
 =   

                              │StabG{1,2,3}│ 

                                                         35=│X
(3)

│. 

                                                                                                         

Hence A7 acts transitively on X
(3)

. 

E) Some general results of permutation groups acting on 

X
[3] 

Similarly like in section 2.1 we give the proofs of two 

lemmas which will be very useful in the investigation of the 

transitivity of An on X
[3]

. 

Lemma 3.1.1: Let G be the alternating group An acting on the 

set X = {1,2,3,---,n} and gϵG have cycle type  (α1,α2,---,αn). 

Then the number of elements in X
[3]

 fixed by g is given by the 

formula  

│Fix(g)│=  








3
!3

1
,   where α1 ≥ 3.                         

Proof: 

Let [a, b, c]   X
[3]

 and gAn .Then g fixes[a, b, c] if and 

only if g[a,b,c]=[g(a),g(b),g(c)]=[a,b,c].  

Which implies that g(a)=a, g(b)=b, g(c)=c. Thus each of the 

elements a,b and c comes from 1-cycles. Therefore, the 

number of unordered triples fixed by gAn is .
3

1









 

Further, an unordered triple say, {a,b,c} can be rearranged 

to give 3! different ordered triples. 

Hence the number of ordered triples fixed by gAn is  

.
3

!3
1









 

 

Lemma 3.1.2: Let G be the alternating group An acting on the 

set X = {1,2,3,---,n} and gϵG have cycle type  (α1,α2,---,αn). 

Then the number of permutations in An fixing [a,b,c]   X
[3] 

 

and having the same cycle type as g is given by:                                                                                

              

(n-3)!                                                                                                                                                 

                                                                 

where  α1≥3. 

(α1-3)! 1 31    


n

i 2

 i
 ! i
 i  

                      

Proof: 

Let gAn have cycle type (α1,α2,---,αn). Then g fixes an 

ordered triples [a,b,c] if and only if each of the elements a,b 

and c come from a single cycle. The number of permutations 

in An having the same cycle type as g and fixing [a,b,c] is 

equal to the number of permutations in An-3 having cycle type 

(α1-3,α2,---,αn). By Theorem 1.1.9, this number is: 

                                                

(n-3)!                                                                                                                                                 

                                                                                                       

   (α1-3)! 1 31    


n

i 2

 i
 ! i
 i  

 

F) Some properties of the action of G = A5 on X
[3]

                                                     

The cardinality of X
[3]

  is 3!    5      = 60. 

                                       3 

 

Theorem 3.2.1: A5 acts transitively on X
[3]

  

Proof:  

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A5 on X
[3]

 has only one orbit. Let the cycle type of gA5 

be (α1,α2,---,αn). Then the number of permutations in A5 with 

the same cycle type as g is given by Theorem 1.1.9. The 

number of elements in X
[3]

 fixed by each gA5 is given by 

Lemma 3.1.1. We now have the following Table 3.2.1. 
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Table 3.2.1: Permutations in A5 and the number of fixed points 

 
Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X[3] 

1 (5,0,0,0,0) 1 60 

(abc) (2,0,1,0,0) 20 0 

(abcde) (0,0,0,0,1) 24 0 

(ab) (cd) (1,2,0,0,0) 15 0 

 

We now apply the Cauchy- Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A5 on X
[3]

  

              1             
Gg

│Fix(g)│    = 
60

1
[(1 x                

           │A5│ 

             60) + (20 x 0) + (24 x 0) + (15 x 0)] = 1. 

           

Thus A5 acts transitively on X
[3]

. 

We can also show that A5 acts transitively on X
[3] 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

[1,2,3]  X
[3]

 and the set X
[3]

 are equal, which implies that the 

action of G = A5  on  X
[3] 

has only one orbit.  Using Lemma 

3.1.2 we have the following Table 3.2.2. 

 
 

Table 3.2.2: Number of permutations in stabG [1,2,3] 

 

Permutation 

type 
Cycle type 

Number of 

permutations in 

stabG [1,2,3] 

1 (5,0,0,0,0) 1 

(abc) (2,0,1,0,0) 0 

(abcde) (0,0,0,0,1) 0 

(ab) (cd) (1,2,0,0,0) 0 

 

From the third column, we see that  

│StabG [1,2,3]│= 1 +0 + 0 + 0 = 1. 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG [1,2,3]│= [G: StabG [1,2,3]]. 

                            =   │G│          =
1

60
 =  60  

                        │StabG [1,2,3]│         

                              =│X
[3]

│. 

Hence A5 acts transitively on X
[3]

. 

G) Some properties of the action of G = A6 on X
[3]

 

The cardinality of X
[3]

  is 3!   6      = 120. 

                                  3 

Theorem 3.3.1: A6 acts transitively on X
[3]

  

Proof: 

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A6 on X
[3]

 has only one orbit. Let the cycle type of gA6 

be (α1,α2,---,αn). Then the number of permutations in A6 with 

the same cycle type as g is given by Theorem 1.1.9. The 

number of elements in X
[3]

 fixed by each gA6 is given by 

Lemma 3.1.1. We now have the following Table 3.3.1. 

 
 

Table 3.3.1: Permutations in A6 and the number of fixed points 

 

Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X[3] 

1 (6,0,0,0,0,0) 1 120 

(abc) (3,0,1,0,0,0) 40 6 

(abcde) (1,0,0,0,1,0) 144 0 

(ab) (cd) (2,2,0,0,0,0) 45 0 

(abc) (def) (0,0,2,0,0,0) 40 0 

(ab) (cdef) (0,1,0,1,0,0) 90 0 

 

We now apply the Cauchy- Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A6 on X
[3]

  

   1      
Gg

│Fix(g)│    = 
360

1
[(1 x 120) +  

    │A6│ 

(40 x 6) + (144 x 0) + (45 x 0) + (40 x 0) + (90 x 0)] = 1. 

        

 Thus A6 acts transitively on X
[3]

. 

We can also show that A6 acts transitively on X
[3] 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

[1,2,3]  X
[3]

 and the set X
[3]

 are equal, which implies that the 

action of G = A6  on  X
[3] 

has only one orbit.  Using Lemma 

3.1.2 we have the following Table 3.3.2. 

 
Table 3.3.2: Number of permutations in stabG [1,2,3] 

 

Permutation type Cycle type 

Number of 

permutations in 

stabG [1,2,3] 

1 (6,0,0,0,0,0) 1 

(abc) (3,0,1,0,0,0) 2 

(abcde) (1,0,0,0,1,0) 0 

(ab) (cd) (2,2,0,0,0,0) 0 

(abc) (def) (0,0,2,0,0,0) 0 

(ab) (cdef) (0,1,0,1,0,0) 0 

 

From the third column, we see that  

│StabG [1,2,3]│= 1 + 2 + 0 + 0 + 0 + 0  = 3. 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG [1,2,3]│= [G: StabG [1,2,3]]. 

                             =    │G│       =
3

360
 =  120  

                          │StabG [1,2,3]│                                                                            

                                                       =│X
[3]

│. 

 

Hence A6 acts transitively on X
[3]

. 
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H) Some properties of the action of G = A7 on X
[3]

 

The cardinality of X
[3]

  is 3!   7      = 210. 

                                  3 

Theorem 3.4.1: A7 acts transitively on X
[3]

  

Proof:  

First, we use the Cauchy – Frobenius Lemma (Theorem 

1.1.8). By Definition 1.1.5, it suffices to show that the action 

of A7 on X
[3]

 has only one orbit. Let the cycle type of gA7 

be (α1,α2,---,αn). Then the number of permutations in A7 with 

the same cycle type as g is given by Theorem 1.1.9. The 

number of elements in X
[3]

 fixed by each gA7 is given by 

Lemma 3.1.1. We now have the following Table 3.4.1. 

 
 

Table 3.4.1: Permutations in A7 and the number of fixed points 

 
Permutation 

type 
Cycle type 

Number of 

permutations 

│Fix(g)│in 

X[3] 

1 (7,0,0,0,0,0,0) 1 210 

(abc) (4,0,1,0,0,0,0) 70 24 

(abcde) (2,0,0,0,1,0,0) 504 0 

(abcdefg) (0,0,0,0,0,0,1) 720 0 

(ab) (cd) (3,2,0,0,0,0,0) 105 6 

(ab) (cd) (efg) (0,2,1,0,0,0,0) 210 0 

(abc) (def) (1,0,2,0,0,0,0) 280 0 

(ab) (cdef) (1,1,0,1,0,0,0) 630 0 

 

We now apply the Cauchy Frobenius Lemma (Theorem 

1.1.8) to get the number of orbits of A7 on X
[3]

. 

 

   1           
Gg

│Fix(g)│ 

│A7│ 

=
2520

1
[(1X210)+(70X24)+(504X0)+(720X0)+(105X6)(2

10X0)+(280X0)+(630X0)]=1 

Thus A7 acts transitively on X
[3]

. 

We can also show that A7 acts transitively on X
[3] 

using the 

Orbit-Stabilizer Theorem (Theorem 1.1.7). Here it is enough 

to show that the cardinalities of the orbit of a triple say 

[1,2,3]  X
[3]

 and the set X
[3]

 are equal, which implies that the 

action of G = A7  on  X
[3] 

has only one orbit.  Using Lemma 

3.1.2 we have the following Table 3.4.2. 

 
Table 3.4.2: Number of permutations in stabG [1,2,3] 

 

Permutation 

type 
Cycle type 

Number of 

permutations in 

stabG [1,2,3] 

1 (7,0,0,0,0,0,0) 1 

(abc) (4,0,1,0,0,0,0) 8 

(abcde) (2,0,0,0,1,0,0) 0 

(abcdefg) (0,0,0,0,0,0,1) 0 

(ab) (cd) (3,2,0,0,0,0,0) 3 

(ab) (cd) (efg) (0,2,1,0,0,0,0) 0 

(abc) (def) (1,0,2,0,0,0,0) 0 

(ab) (cdef) (1,1,0,1,0,0,0) 0 

From the third column, we see that  

│StabG [1,2,3]│= 1 + 8 + 0 + 0 + 3 + 0 + 0 + 0 = 12. 

 

Therefore, by Orbit-Stabilizer Theorem, we have that 

│OrbG [1,2,3]│= [G: StabG [1,2,3]]. 

                             =      │G│       =
12

2520
 =  210 =│X

[3]
│. 

                              │StabG [1,2,3]│  

Hence A7 acts transitively on X
[3]

. 
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