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Abstract— This paper presents to solve the Laplace’s equation 

that is many applicable to the engineering problems. Analytical 

solution may be calculated by separation of variables method. 

Numerically solutions by two methods i.e. the finite difference 

method (FDM) and the boundary element method (BEM) are 

employed to predict the potential characteristics of the domain. In 

the BEM, the integration domain needs to be discretized into 

small elements. The boundary integral equation derived using 

Green’s theorem by applying Green’s identity for any point in the 

surface. The methods are applied to investigate an example of 

rectangular domain. The present methods can be extrapolated to 

other linear homogeneous differential equations. Both types of 

numerical models are computed and compared with analytical 

solution. The results obtained agree perfectly with those obtained 

from exact solution. 

 

Keywords— Laplace’s equation, Boundary Element Method, and 

Finite Difference Method 

 

I.    INTRODUCTION 

n mathematics, a PDE is a differential equations involving 

functions and their partial derivatives. PDEs are used to 

formulate problems involving functions of several variables, 

and are either solved by hand, or used to create a 

relevant computer model.  PDEs can be used to describe a 

wide variety of phenomena such as 

sound, heat, electrostatics, electrodynamics, fluid 

flow, elasticity, or quantum mechanics. These seemingly 

distinct physical phenomena can be formalized similarly in 

terms of PDEs. Just as ordinary differential equations often 

model one-dimensional dynamical systems, partial differential 

equations often model multi-dimensional systems. 

Because of its vast range of application at all science branches, 

lots of scientists and engineers worked on this equation. In the 

literature, Carrier and Pearson [1], Muskhelishvili [2], Ling 

[3], Timoshenko and Goodier [4], Lebedev [5], Gilbarg and 

Trudinger [6] have solved this kind of problems. In the sample 

of earlier works, Yu Xie Mukherjee, and Subrata Mukherjee 

studied on the boundary node method for potential problems 

using various boundary conditions of the Dirichlet, Neumann 

and mixed problems [7]. Qian et al solved a Cauchy problem 

for the Laplace equation in a rectangle [8]. They proposed two 

different regularization methods on the ill-posed problem 

based on separation of variables. Jain et al proposed exact 

numerical closed-form expressions for potential coefficient 

[9]. The basic idea was to express all potential coefficients of 

suitably defined virtual plates. Furthermore, the Laplace 

equation has to be solved numerically. Chen and Shen solved a 

semi-analytical method for the Laplace problems with circular 

boundaries. They used the degenerate kernels to avoid 

calculating the principal values [10]. Their achievement are 

five advantages, well-posed linear algebraic system, principal 

value free, elimination of boundary-layer effect, exponential 

convergence and mesh free. Chen et al focused on the 

connection between conformal mapping and curvilinear 

coordinates and figure out the relation to take integration by 

way of mapping in the complex plane [11]. Chen et al used the 

image method to solve boundary value problems in domain 

containing circular and spherical shaped. Two and three 

dimensional problems as well as symmetric and anti-

symmetric cases are considered [12]. Same authors derived the 

Green’s function using the bipolar coordinates, image method 

and the method of fundamental solutions of Laplace problems 

containing circular boundaries [13]. They studied on the 

optimal locations of sources in the method of fundamental 

solutions that are dependent on the source location and the 

geometry of problems. Matthew et al applied the explicit FDM 

for solving singularity problems on potential computation in 

spheroidal systems [14]. They carried out method for treating 

the singularities at the pole regions which impose a Neumann 

boundary condition along the two lines of symmetry. Morales 

et al [15] studied on the solutions of Laplace’s equation with 

simple boundary conditions, with consideration to their 

applications for capacitors with multiple symmetries. 

The objective of this work is to determine potential in 

rectangular domain using BEM and FDM. The numerical 

results and analytical solution are presented here. Comparisons 

reveal that the methods are efficient and the results are in good 

agreement with analytical measurements.  

The paper is arranged hereafter: In section II, we solve 

Laplace’s equation in simple geometry by separation of 

variables. As a matter of illustration of the method, we obtain 
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the potential quantity for this case. In section III, we applied 

BEM in order to obtain potential at each point of domain. On 

the other hand, we use FDM in Section IV to determine the 

considerable value. Section V shows results of two numerical 

models, BEM and FDM. Also we compare the results with 

analytical data. Finally, Section VI contains our conclusions.   

II. EXACT SOLUTION 

The Laplace equation and its boundary conditions (Fig. 1) 

are defined as follows: 

uBC 






:

0
2

                                   (1) 

Separation of variables is any of several methods for solving 

ordinary and partial differential equations, in which algebra 

allows one to rewrite an equation so that each of two variables 

occurs on a different side of the equation. It works because it 

reduces a PDE to ODEs. All the steps of solution can be 

expressed as follows. In this method we attempt to determine 

solutions in the product form. Next we place this in Laplace’s 

equation. Then we claim it is necessary that both sides of the 

equation must equal to same constant known as the separation 

constant named Lambda. Now we should do this for any 

arbitrary constant due to boundary condition. However 

eventually we will discover that only certain values of Lambda 

are allowable. Now we obtained the Eigen functions of each 

variable. The original  is obtained by multiplying 

together the variables. In summary, we obtained product 

solutions of the Laplace’s equation satisfying the specific 

homogenous boundary conditions only corresponding 

to . These solutions, , have 

 and , where we 

determined from the boundary conditions the allowable values 

of the separation constant , . Here n is a positive 

integer. 

 
Fig. 1.  Boundary condition 

 

Thus, product solutions of the Laplace’s equation are 
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So exact solution of equation is obtained as follows 
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III. BOUNDARY ELEMENT METHOD (BEM) 

In the BEM, Laplace’s equation may be transformed into 

integral form based on Green’s theorem. This is a numerical 

method for solving partial differential equations encountered 

in mathematical physics and engineering. The integrals in the 

BEM are numerically integrated over the boundary. The 

boundary is divided into small elements, as well as other 

numerical methods ultimately a linear algebraic equation will 

be obtained which has only one answer. BEM is simply and 

geometrically applied for any complex shape. In addition, 

BEM can model areas with sharp changes in variables with 

accuracy better than the FDM because all approximations 

limited to the surface. The surface is divided into sections and 

elements. Shape functions are used to describe the variables 

and geometries for each element. These shape functions can be 

linear, quadratic and higher orders. In this way due to the 

complexity of integrating functions, the analytical integration 

is not recommended to calculate integrals and numerical 

integration and Gaussian square method is used instead of it. 

When the points are close to each other in the calculation of 

singular integrals or source point p matches the boundary point 

q, special relationships must be used. Because of the main 

solution contains orders of 1/r. The total integral is calculated 

by adding all the integrals on all elements our approach to 

solve this equation is that the use of fixed element according to 

the geometry and boundary conditions.  

In the BEM for a body of the boundary and domain, the 

integral formulation may be expressed as: 
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And G is the green’s function of the Laplace equation. 

 LnrG
2
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where r distance between the source point and integral element 

expressed as  

qpr                                                                            (7) 

Discretization form of the equation can be represented as 

follows: 
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where and  are influence coefficients and defined as 

follows: 




 GdSLlj

                                                                        (9) 
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The integral can be evaluated by numerical and analytical 

methods. Moreover setting  

HH ljljlj
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where  is the Kronecker delta, which is defined as 
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The term of the RHS of the (8) can be calculated by the 

integral on the boundary. If the Dirichlet boundary condition 

employs all terms of the u will be completely known. Then (8) 

can be arranged as 
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Equation (13) may be solved and the unknown variables are 

obtained.  

At this stage, the values obtained on all boundaries now it must 

be assumed as a source to resolve in internal point and its 

relationship. With all the existing elements is obtained as 

follows: 
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where the matrix form is expressed as 
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First, the point p is placed in the midpoint of element 1 that 

provides a set of equations. This collection is related to the all 

N variables to each other on the surface. In the following point 

p is placed in the middle of element 2 and leads to a series of 

equations at the point. Note that the equation should be 

organized so that all the unknowns placed on the left side of 

the equation and the known values placed on the right. A 

direct solution method such as Gaussian methods is used 

because the final matrix is non-symmetric and full of nonzero 

coefficients. 

Furthermore, in the BEM, we solve only for the boundary 

distribution of the unknown function or one of its derivatives. 

It is not necessary to compute the requisite function throughout 

the domain of solution. Once the unknown boundary 

distribution is available, the solution at any point may be 

produced by direct evaluation. Thus, the crux of the BEM is 

the reduction of the dimension of the solution space with 

respect to physical space by one unit. 

Despot of, some initial effort is required to learn the 

fundamental principles underlying the integral representations 

and the implementation of the numerical methods. An 

oversight in the mathematical formulation, a mistake in the 

implementation of the numerical methods, or an error in a code 

is likely to have a catastrophic effect on the accuracy of the 

solution.  

IV. FINITE DIFFERENCE METHOD (FDM) 

    FDM is one of the easiest and an oldest numerical method 

because of its simplicity is commonly used by engineers. 

However, due to the inability of this method in spatial 

discretization of non-rectangular and complex geometries, its 

usage is limited to relatively simple and rectangular geometry 

issues. In FDM Taylor series expansion and equations such as 

these are used. Derivatives and equations approximate and 

directly replace with various terms in the equations. Finite 

difference estimates are discrete model of continuous finite 

difference operators. They are used to provide a discrete 

model of a partial differential equation. Finite differences 

associated with the derivative of a function estimate at a point 

such as X0 obtained by using the function values in the 

vicinity of the point. These estimates have been usually formed 

of function values in a certain number of points that have been 

placed at the same distance apart. Estimates of finite difference 

can be divided to smaller categories of backward, forward and 

central. For this article according to the Laplace’s equation 

central three-point discretization for second order derivatives 

were used in the following equations: 
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where  

By substituting x in Laplace’s equation, discretized equation 

can be obtained as follows:  
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After discretization, boundary conditions must be applied. 

The boundary condition on Dirichlet type is applied directly in 

the discrete equation. Boundary derivatives can be 

approximated with finite difference and placed it in the system 

of linear equations. One thing that is important is that 

truncation error finite difference estimations for boundary 

derivative should be equal to finite difference truncation error 

for differential equation, because of its high accuracy in 

validation. Fig. 2 shows the discretizations of the elements in 

the BEM and FDM.  

 
FDM                                                     BEM 

 

Fig. 2. Boundary discretization on both methods 
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V. RESULTS 

In the BEM, number of the boundary element are 24 while 

the elements number of the FDM is 32. Comparison of the 

potential by the numerical and analytical results of the 

potential is shown through Tables 1 and 2 when the field point 

is located on the middle of each element. The approach of this 

paper is based on considering equal elements on boundary for 

BEM and FDM to compare these numerical methods with each 

other in same level of accuracy. Generally, the error of the 

BEM is less than the FDM in all points. These solutions are 

obtained when number of elements in the BEM is less than the 

FDM. If we increase the number of the elements in the BEM 

the relative error may diminishes much more than the present 

results. 
 

Table 1. Comparison of the potential (analytical and BEM) 

X Y Analytical BEM Error 

0.25 0.25 0.292012 0.28950 0.008602 

0.5 0.25 0.41309 0.4099 0.007722 

0.75 0.25 0.292012 0.28950 0.008602 

0.25 0.5 0.773854 0.76 58 0.010407 

0.75 0.5 0.773854 0.7658 0.010407 

0.25 0.75 1.7581182 1.7417 0.009374 

0.75 0.75 1.7581182 1.7417 0.009374 

0.25 1 3.88579 3.8551 0.007898 

0.75 1 3.88579 3.8551 0.007898 

0.25 1.25 8.55535 8.5002 0.006231 

0.75 1.25 8.55535 8.5002 0.006231 

0.25 1.5 18.9767 18.8624 0.006023 

0.75 1.5 18.9767 18.8624 0.006023 

0.25 1.75 43.49488 43.4986 0.000855 

0.5 1.75 54.466 54.6388 0.003172 

0.75 1.75 43.49488 43.4986 0.000855 

 
Table 2. Comparison of the potential (analytical and FDM) 

X Y Analytical FDM Error 

0.25 0.25 0.292012 0.353 0.208854 

0.5 0.25 0.41309 0.4989 0.207730 

0.75 0.25 0.292012 0.353 0.208854 

0.25 0.5 0.773854 0.9132 0.180071 

0.75 0.5 0.773854 0.9132 0.180071 

0.25 0.75 1.7581182 2.0103 0.143397 

0.75 0.75 1.7581182 2.0103 0.143397 

0.25 1 3.88579 4.2957 0.105490 

0.75 1 3.88579 4.2957 0.105490 

0.25 1.25 8.55535 9.1532 0.070112 

0.75 1.25 8.55535 9.1532 0.070112 

0.25 1.5 18.9767 19.6632 0.036176 

0.75 1.5 18.9767 19.6632 0.036176 

0.25 1.75 43.49488 43.2101 0.0065474 

0.5 1.75 54.466 53.1774 0.0236589 

0.75 1.75 43.49488 43.2101 0.0065474 

VI. CONCLUSIONS 

     In this paper, a two dimensional numerical model using the 

BEM was introduced to predict the potential characteristics of 

various point of domain. In addition, the FDM applied to 

compare with. The numerical results of the potential 

distributions were compared against exact data and shown to 

be a good agreement. As a result of the present work, the 

following conclusions can be drawn: 

 A comparison of the potential distributions for the various 

points of geometry shows satisfactory results compared 

with those exact and numerical data. 

 Alternative methods require discretizing the whole of the 

solution domain, and this considerably raises the cost of 

the computation. 

 Problems that can be solved on a laptop computer using 

the BEM may require the use of a supercomputer by FDM 

for the same level of accuracy. 
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