
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 13

Memory Management: Challenges and Techniques

for Traditional Memory Allocation Algorithms in

Relation with Today's Real Time Needs

Muhammad Abdullah Awais

MS150200157, Virtual University of Pakistan

ms150200157@vu.edu.pk

Abstract– In recent era of computing, applications and operating

systems cannot survive without efficient memory management,

especially if an application has to be under severe load for undefined

long time. Resources must be utilized efficiently to enhance

performance. Real time systems require timely and proficient use of

memory to perform efficiently otherwise the purpose of real time

systems would be lost. It’s the responsibility of operating system to

provide the support for memory management through different

ways supported as it acts as an interface between the primary

resources such as hardware and applications running. Different

memory allocation algorithms have been devised to organize

memory efficiently in different timestamps according to the needs

and scenario of usage yet there are issues and challenges of these

allocators to provide full support for real time needs. Memory

management in any operating system is governed by different

aspects such as on hardware level, application level and especially

the operating system level memory management which is our focus.

Real time systems require memory on priority otherwise program

may crash or may be unresponsive if demanded memory is not

allocated with quick response. Beside the timing constraints,

memory allocator algorithms must minimize the memory loss which

comes in the form of fragmentation, the unusable memory in

response to the memory allocation needs because memory is

allocated in the form of blocks. Also the maintained locality of

reference between memory blocks must be efficient for any memory

allocation algorithm. Literature available provides extensive

knowledge about memory allocation algorithms to satisfy the needs

of real time applications. Our focus would be to analyse traditional

dynamic memory management algorithms with respect to their

functionality, response time and efficiency to find out the issues and

challenges with these allocators to sum up the knowledge to know

the limitations of these algorithm which might reduce the

performance of real time systems. This research paper will give a

comparative analysis of some well known memory management

techniques to highlight issues for real time systems and innovative

techniques suitable for these applications will be argued.

Keywords– Memory Management, Dynamic Memory Management,

Dynamic Memory Allocation, DMA, Real Time System, Operating

System Memory Management, Fragmentation and Memory Blocks

I. INTRODUCTION

odern operating systems provide efficient memory

management and still research is being conduct to

improve the way the memory is allocated for

applications because the main problem faces by memory

allocation algorithm is to efficiently allocating the demanded

memory blocks to the demanding applications with minimum

response time along with minimum memory loss in the shape

of traditional memory loss problem called the fragmentation

of memory which keeping the reference to those blocks that

has been allocated and to those blocks also which are free to

be allocated for next demand by any application running on

the operating system.
It’s not enough to just provide the memory blocks needed

by the application rather the efficiency of real time systems

rely on the timely availability of these memory blocks with

minimum fragmentation. For this purpose different kind of

memory allocation designs are being utilized such as the static

memory allocation and dynamic memory allocation as

described in Fig. 1.

Fig. 1. Memory Allocation

Both these techniques are supported by real time systems

and both of them differ the way the memory is distributed as

in static memory allocation, memory is allocated at compile

time and its known in advance what to allocate while in

dynamic memory allocation scheme, the memory is allocation

at run time and reference is maintained for allocated and

unallocated memory blocks in the form of free and in use

memory blocks. With the presence of these techniques,

today’s state of the art operating systems utilize dynamic

memory allocation schemes through various different ways

such as programming interface.
In the presence of different memory management

techniques, goal of any memory allocation algorithm rest in

providing real time support for memory allocation. Every

memory allocation technique has its own pros and cons and it

justify their performance for the purpose these techniques are

M

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 14

developed. Our intent is to figure out what these techniques

can do and what is required by real time systems.
This research paper is divided in different sections where

our intent is to analyze different traditional dynamic memory

allocation algorithms to find out their response times and

viability of these algorithms against real time applications. In

section II of the paper, some related work and background

knowledge will be presented. Section III will present research

methodology followed by which it’s possible to sum up this

knowledge to comparatively analyze these techniques. In

section IV different memory allocation algorithms will be

presented along with their comparative analysis in next

section and also a new technique suitable for real time

applications will be discussed. In final section conclusion and

suggestions with future work will be presented.

II. BACKGROUND KNOWLEDGE AND RELATED

WORK

Extensive literature review revealed that researchers has

indicated lot of limitations of traditional memory allocation

techniques with justification and suggested improvements.

Still research is being conduct because of the criticality of this

topic. Real time systems have always been under research

because of the constraints they impose such as quick response

time required by real time systems, preemptive scheduling,

and time based scheduling. These features of real time

systems make them special and to serve them special

allocators are devised to satisfy timely requests.
Dynamic memory management plays important role in

memory management because of overhead associated with

static memory management because whole required memory

is allocated to running program at compile time and any block

of that memory which is not used by application cannot be

used by other application which is not efficient use of

resources and further more dynamic memory allocation utilize

heap memory data structure while stack is used in static

memory allocation which makes DMA more efficient as

compared to static memory allocation as discussed in [1].
In [2] a new variation of famous buddy system has been

proposed called tertiary buddy which is an extension to binary

buddy system with improved splitting and response time as

compared to other buddy system variations. An overview of

tertiary buddy will be presented in upcoming sections.
A lot of research has been conducted on improving

dynamic memory allocators and the basics of segregated and

sequential fit are always in research zone to be improved.

Two level segregated fit algorithms is one of the

improvements of segregated fit algorithm by [3]. While

keeping in mind the requirements of real time systems, two

levels segregated fit algorithm has been proposed. Even some

improvements have also been done on two levels segregated

fit algorithm to make it more suitable for real time systems by

XiaHui and JinLin Wang.
Similar sort of work has already be done in [4] where

author surveyed various techniques and algorithms in

dynamic memory management and compiled result based on

comparison but our work is different as I will include some

new techniques and some more numerical analysis then in [5].

III. RESEARCH QUESTION

RQ: What are challenges and issues associated with

traditional memory management techniques which hinders the

performance in real time systems?

IV. RESEARCH METHODOLOGY

To answer the question on which my research is based, I

performed extensive literature review according to the

research guidance provided by B.Kitchenham [5]. According

to the guidelines and research methodology I searched

different research papers on the topic of memory management

techniques. There is a bulk of data available online presenting

different techniques for memory management in operating

system. So in first search I found many research papers then I

shortlisted some of them fulfilling my research topic. Many

research papers are presenting comparative studies while in

some papers, new techniques for memory management are

proposed.

A. Searching Strategy

Initially I searched for memory management techniques in

operating system to broaden and enhance my understanding

about memory management so that essential concepts and

ideas might not miss. To make sure I get relevant research

papers with detail analysis of emerging memory management

techniques , every possible search was conducted in IEEE

explore digital library , Google scholar and third part research

paper providing libraries such as Research Gate. To get

relevant research knowledge I used keywords like memory

management, memory allocation in operating system, real

time operating system memory allocation, issues in memory

allocation and techniques for dynamic memory allocation. By

researching on different research publishing platforms, I got

extensive data about operating system memory management

techniques, allocators, algorithms and issues related with

these techniques.

B. Selection

After studying basic of operating system memory

management it was necessary to shortlist research papers on

operating system memory management and issues related to

traditional memory management techniques and reasons why

these techniques are not best used for today’s real time

memory usage for applications and operating system which

reduced number of research papers.

C. Study Methodology

Instead of pure comparative analysis of operating system

memory management techniques, main focus was on

understanding the operating system memory management

techniques and to understand the situations in which any

technique is applied. So to focus on the result an overview

and essential detail of some new and already used techniques

is presented in this paper and key issues related to these

algorithms are summed up to conclude the complexities

involved with these techniques and requirements for real time

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 15

applications to answer the research question. Fig 2 shows

basic model followed for the research paper.

Fig. 2. Basic Model for Research

V. DYNAMIC MEMORY MANAGEMENT ALGORITHMS

Due to the significance of dynamic memory management

in operating system, most of the traditional and new memory

allocation algorithms utilize dynamic memory allocation

scheme to allocate memory from heap at run time as

explained in [6]. Here in this section we will provide an

overview of traditional algorithms under dynamic memory

allocation because it’s the scheme which is utilized by state of

the art real time systems and has excellent operating system

support. New algorithms are devised based on the limitations

of previous algorithms and with improvements so we will fist

discuss traditional algorithms then we will have a look on new

algorithms devised for real time systems.

A. Sequential Fit

As the name suggest, this algorithm utilize the free blocks

of memory in linear order in the form of a list called free list.

And memory blocks are allocated from this free list using

pointer in different ways according to the situation in hand.

There are four different strategies used by sequential fit

algorithm as discussed below and difference is shown by

Fig. 3.

1) First fit: First fit is the simplest strategy followed by

sequential fit as the first available memory block which is

greater or equal to demanded memory is served irrelevant

of the consequences.

2) Next Fit: Next fit is similar to first fit but it start

searching the list from the position where last search

stopped and it serve the next available memory block.

3) Best Fit: As name suggest, best fit will allocate that

block which is best in terms of demanding size.

4) Worst Fit: It’s opposite to best fit as it will always return

the largest memory block available.

In Fig. 3 sequential fit algorithms is shown in action. Red

block indicate the memory blocks already used and are not

available to be used while available memory blocks are ladled

with the capacity. Current pointer position is shown after first

1k memory. Now we will show the execution of this

algorithm if 2k memory is demanded by application.

Fig. 3. Sequential memory blocks

According to the scenario current pointer position is after

the 1k memory location as indicated in Fig. 3. If first fit is

used then the very first memory block from the current

pointer which can satisfy the demand is served. While in best

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 16

fit, that memory block will be served which minimize the

memory wastage while worst fit will always return the largest

memory block.

B. Segregated Fit

Segregated fit algorithm employ array of free blocks to

allocate memory and this methodology is also incorporated by

many advanced memory allocators. Main theme of segregated

free list algorithm is to use size in power of two [7]. And

divide memory blocks into classes holding different size

blocks. By this way whenever a request of particular size is

received, segregated algorithm round the size of that request

up to the best available class of particular memory blocks and

then memory block from matching class size is allocated.

Simple logic behind this technique is shown in Fig. 4. Like

sequential fit algorithm, segregated fit algorithm also employs

certain strategies as discussed below.

1) Strict Size classes: Basic idea behind this kind of

strategy is to maintain a list of different classes holding

memory blocks of similar sizes. That’s way each class of

particular size will hold memory blocks of same size in

list.

2) Exact List. This strategy involves in marinating large

number of free lists of all possible memory block sizes

and it’s best used if there are small size classes containing

free lists of huge number.

3) Classes with Range: In this type of segregated free

list, free list may contain different size blocks.

Fig. 4. Segregated free list

C. Buddy System

Buddy system is innovative way of memory allocation

based on the idea behind segregated free list methodology

where size of classes is used with rounding. These way free

lists are separated according to sizes. In simple words it

divides the memory area into allowable block size and

partition the area until minimum block size is achieved. In

Fig. 5 basic operation of buddy system is shown where a 3k

memory needs to be allocated and it partition the available

memory and allocate this memory block.

Fig. 5. Basic Buddy system

1) Binary Buddy: In binary buddy variation, all block

sizes preserve the property of power of 2 and splitting of

memory in 2 equal halves is observed in binary buddy.

2) Weighted Buddy: Like binary buddy version,

weighted buddy also exhibit power of 2 scenarios but

splitting can take place in 2 equal halves or 2 unequal

halves because series can be power of two and 3 times

the power of two as shown in Fig. 6.

Fig. 6. Weighted Buddy system

3) Fibonacci Buddy: According to the name, Fibonacci

buddy follow the ancient Fibonacci sequence and size

classes are based on Fibonacci sequence [8] as in Fig. 7.

Fig. 7. Fibonacci Buddy system

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 17

4) Double Buddy: Just like binary buddy and weighted

buddy in this variation there are 2 classes, one following

the rule of power of two while in other list there is power

of 2 and offset value is used.

5) Tertiary Buddy: It’s an extension to binary buddy. In

tertiary buddy block sizes are power of 2 and 3 x 2
x-3

. By

this variation its far more better than binary buddy as

detailed analysis provide by [3]

VI. COMPARISON OF BUDDY SYSTEM VARIATIONS

 In previous section we have discussed different

versions of buddy system. Binary buddy is very simple

and due to the equal size partition make it easy to compute

pointer which makes this buddy allocator a real time

allocator. Despite of this advantage internal fragmentation

is on higher side as compared to others. On the other hand

Fibonacci buddy has lower internal fragmentation than

binary buddy while weighted buddy with different classes

has lower internal fragmentation than all other buddy

system variations. In Fibonacci buddy block splitting only

take place if sizes are in numbers. Results of

fragmentation are publicized in table 1 below.

TABLE 1
Comparison of Different Buddy system schemes

SN Buddy System Variations
Binary Internal Fragmentation

1 Binary Higher than others
2 Double Buddy Lower than Binary Buddy
3 Fibonacci Buddy Lower than Double Buddy
4 Weighted Buddy Lowest
5 Tertiary Buddy Lowest than all of Buddy

Variations

D. Indexed Fit

In Indexed fit memory allocator an index of free and

reserved memory blocks is maintained using different types of

data structures. Indexing is employed in any other technique

in several ways because it’s the most basic mechanism for

traversing or searching an array or list. As far as response

time is concerned it is somewhat faster than traditional

sequential fit algorithm. Fig. 8 shows basic indexing layout.

Fig. 8. Indexed fit

E. Bitmapped Fit

Bitmapped fit is an improved variation of indexed fit and it

keeps references to the used and free portion of array by using

bits. Due to searching time which is quite high, bitmapped is

not used as much as other allocators are used. Yet research is

being conducted on improved versions of bitmapped

allocation algorithm because in new operating systems and

applications there are situation where bitmapped fit can be

efficient to use.

F. Half Fit

Half fit is much older technique which used bitmaps to

keep reference to unfilled lists while using instructions of

bitmap search technique to get those bits which are set in

bitmaps. Although it’s known that bitmap is little bit slower

but while combining and improving, it gave good results.

Main theme behind half fit is to use segregated list of single

level which is used to link variable size free blocks. Fig. 9

shows implementation details of half fit in action.

Fig. 9. Half fit blocks 156,250 and 200

G. Hoard

Hoard is designed especially for multiprocessor systems

and its performance is quite remarkable among other

discussed algorithms. Trick logic behind hoard is to use

operating system virtual memory as superblocks and these

superblocks are used to server blocks of memory of one class.

To reduce external fragmentation it re cycle its superblocks

which are not in use [9].

VII. TWO LEVEL SEGREGATED FIT

It’s an important algorithm in modern dynamic memory

allocation. It stems its root from segregated fit and half fit as

described earlier. It’s different from traditional hoard

algorithm because it uses segregated lists in 2 levels as its

name suggest. These 3 levels of segregated free lists are used

to carry free blocks of memory of same class which reduce

internal fragmentation. In first level there are free blocks of

memory following power of 2 sequences while 2
nd

 list uses

user’s configured variables to divide free block classes of first

list. Thus help to offer bounded response time. While

allocating and de allocating it uses 3 different equations as

described in [11] with essential implementation detail while

Fig. 10 shows basic graphical view of two level segregated fit

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 18

algorithm. Performance and working analysis is presented in

section VIII.

Fig. 10. Two Level Segregated fit

VIII. COMPARATIVE ANALYSIS

In previous sections we have discussed some traditional

memory allocation algorithms. Here in this section a

comparative analysis is presented with respect to allocation

and de allocation time of different algorithms. Then a

comparative analysis with respect to fragmentation and

response time will be presented.

Fig. 11. Worst Case Time Complexity

First of all the sequential fit algorithm is slow because it has

to traverse the list if following the best fit strategy to find the

optimal memory block which minimize the fragmentation and

this algorithm is implemented by famous doubly linked list.

Best part of best fit algorithm is that it minimizes the

fragmentation as if found memory block is optimal and yet

larger than requirement then splitting of block take place to

use the required space and remaining is freed immediately.

Same way first fit and next fit works by splitting of blocks but

following their underlying strategy as described in previous

sections. Overall allocation and de allocation time of

sequential fit is compared with other algorithms in Fig. 11

while major drawback of this algorithm is the amount of

fragmentation it cause and the response time as in Fig. 12.
Segregated free list is one of those algorithms which have

been used to devise more advanced and optimal algorithms

such as hoard and two level segregated fit. In its pure form its

performance is not as good as if it is used in conjunction with

other algorithms because on its own it causes large

fragmentation with maximum memory trace. On the other

hand performance of indexed fit is somewhat similar with

bitmapped and segregated fit algorithm.
Among all these memory allocators, performance of two

level segregated fit is better because its worst case time is less

than other’s while it also minimize the fragmentation with fast

response time which makes it suitable for real time

application.

Fig. 12.

IX. CONCLUSIONS AND SUGGESTIONS

In this research paper different memory allocation

techniques have been discussed along with their comparative

analysis with respect to internal fragmentation they cause,

response time, allocation time, de allocation time and memory

footprint they use. Every technique discussed belonging to

dynamic memory management has pros and cons and can be

best utilized in particular situation. Most of the algorithms are

improved versions of previously discussed schemes such as

sequential and segregated fit and TLSF. Analysis shows that

TLSF among mentioned technique is best to use for real time

systems because TLSF cause very low internal fragmentation,

its response time is very good which is the primary demand of

real time system where time is most important factor. Also

TLSF allocation and de allocation time is small constant time

that makes it much faster than other traditional techniques.
With comparative analysis it’s found that the larger

fragmentation, slow response time, larger allocation and de

allocation time with implementation constraints, it makes

traditional dynamic memory allocators like segregated fit,

indexed fit, bitmapped fit and simple buddy system in feasible

and in efficient for real time system because real time systems

always pose timing and bounded rationality constraints on

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016

[ISSN: 2045-7057] www.ijmse.org 19

operating system memory management allocators. So Hoard,

tertiary buddy system and two level segregated fit are suitable

for real time applications with faster response time, minimum

amount of fragmented memory respectively.

REFERENCES

[1] Nilesh Vishwasrao and Prabhudev Irabashetti, “Dynamic

Memory Allocation: Role in Memory Management”,

International Journal of Current Engineering and Technology,

Vol. 4, No. 2, April 2014.
[2] Divakar Yadav and Ashok Sharma, “Tertiary Buddy System

for Efficient Dynamic Memory Allocation”, Conference:

Proceeding SEPADS'10 Proceedings of the 9th WSEAS

international conference on Software engineering, parallel and

distributed systems, At Cambridge.
[3] Masmano, I.Ripoll, A. Crespo, and J. Real,” TLSF: a new

dynamic memory allocator for real-time systems”, Real-Time

Systems, 2004. ECRTS 2004. Proceedings. 16th Euromicro

Conference
[4] Dipti Diwase, Shraddha Shah, Tushar Diwase and, Priya

Rathod, “urvey Report on Memory Allocation Strategies for

Real Time Operating System in Context with Embedded

Devices”, International Journal of Engineering Research and

Applications (IJERA), Vol. 2, Issue 3, May-Jun 2012,

pp.1151-1156.
[5] B. Kitchenham and S. Charters, “Guidelines for performing

systematic literature reviews in software engineering,”

Version, Vol. 2, 2007, pp. 2007–01.

[6] Puaut, "Real-Time Performance of Dynamic Memory

Allocation Algorithms,"14th Euromicro Conference on Real-

Time Systems (ECRTS'02), June 2002.
[7] Mohamed A. Shalan, “Dynamic Memory Management for

Embedded Real-Time Multiprocessor System On a Chip”, A

Thesis in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy from School of

Electrical and Computer Engineering ,Georgia Institute of

Technology, November 2003.
[8] B. Cranston and R. Thomas, “A Simplified recombination

Scheme for the Fibonacci Buddy System,” CACM, June 1975,

331-332.
[9] Valtteri Heikkilä, “A Study on Dynamic Memory Allocation

Mechanisms for Small Block Sizes in Real-Time Embedded

Systems”, University of Oulu Department of Information

Processing Science, conference 17, December 2012.
[10] Takeshi Ogasawara, “An Algorithm with Constant Execution

Time for Dynamic Storage Allocation”, Advanced Compiler

Group Tokyo Research Laboratory, IBM Japan, Ltd. 1623-14,

Shimo Tsuruma, Yamato-Shi, Kanagawa 242, Japan.
[11] Seyeon Kim, “Node-oriented dynamic memory management

for real-time systems on ccNUMA architecture systems”,

University of York Department of Computer Science,

conference paper April 2014.

