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Abstract—Wireless sensor networks are an emerging area of 

research interest and a network of distributed sensors grouped 

together to monitor physical or environmental conditions, like 

pressure, temperature, sound etc. The development of wireless 

sensor networks was first motivated by military applications; 

today such networks are used in several industrial, non-

industrial and consumer applications, such as industrial process 

monitoring and control, machine observation, health monitoring, 

etc. By framework sensor networks as virtual databases, we can 

offer a nonprocedural-programming interface suitable to data 

management system. We squabble here that in order to attain 

energy efficient and useful completion, query-processing 

operators should be implementing within the sensor network and 

that estimated query results would play a key role in network 

system. We study that in network implementations of database 

operators need novel data centric routing mechanism, as well as 

a reassessment of conventional network and database interface 

layering. Wireless sensor networks are presently getting 

considerable concentration due to their unrestrained 

prospective. 
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I. INTRODUCTION  

 sensor network is viewed as a distributed database that 

accumulates physical capacity about the environment 

indexes them and then serves queries from user. Each 

sensor node normally generates a stream of data items that are 

obtained from the sensing devices on the node [6]. Wireless 

sensor networks have acknowledged important recent 

concentration in both the networking and operating systems 

community [23], [25]. Anticipating the development of such 

devices, recent work has also begun exploring possible 

applications of sensor networks for monitoring diverse 

infrastructures. The examples of such applications such as 

monitoring in edifice energy usage for preparation energy 

maintenance [1]; military and civilian surveillance [21]; 

monitoring of natural habitats with a view to understanding 

ecosystem atmosphere [6]; and data assembling in 

instrumented learning framework for children [35]; and 

measuring variations in local salinity levels in riparian 

atmosphere [36]. Particularly, the energy cost of contact is 

expected to be considerably higher than the cost of local 

calculation [30, 23]Sensor networks are best intended in a data 

centric process: the low-level communication primitives in 

these networks are considered in terms of named data rather 

than the node identifiers used in conventional networked 

communications [51]. In this paper, we investigate challenges 

in realizing this framework view of the sensor network as a 

database system. Particularly, this view allows users to 

concern database queries to one or more nodes within the 

sensor networks [52]. These queries can be one-shot relational 

queries with a fixed answer set or ongoing permanent queries 

that create an unrestrained stream of consequences. In a typical 

situation, users can recover information of interest from a 

WSN by injecting queries and gathering results from the so-

called base stations which behave as an interface between 

users and the network. It is also intended that sensor networks 

will eventually be connected to the Internet through which 

inclusive information sharing becomes realistic. 

Furthermore, we propose that a sensor network database or a 

sensornet database should be architected on two significant 

thoughts [13].  

The first is in network implementations of primal database 

query operators such as grouping, aggregation, and joins. By in 

network we mean group communication and routing protocols 

which together with probable dispensation at intermediary 

nodes that execute each operator in an application sovereign 

method [14].  

Second, dissimilar the strict semantics connected with 

customary data models and query languages, we bicker for 

comforting the semantics of database queries to allow 

estimated outcome. This recreation enables energy-efficient 

implementations even given the predictable high level of 

network dynamics [15]. Hence, it is not only expedient but 

certainly more precise to present estimated semantics and 

represent a spectrum of tradeoffs between brief and precise 

communication system. As we converse underneath, numerous 

pieces of prior work on online sampling and estimation in the 

database neighborhood are appropriate in this perspective. 

II. ENVIRONMENT AND STRUCTURE OF SENSOR NODES 

The sensor node comprises of sensors, microcontrollers, and 

RF transceiver. It is often compelled by a battery or energy 

collecting structure. The sensor produces analogue signals, and 

an ADC transforms the signals. The microcontroller 

implements a series of algorithms to develop the data. All data 

will be amassed in the microcontroller and transmit through a 

unified RF transceiver. 

A 
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Fig. 1. The system block diagram for Wireless Sensor Network nodes 
 

 

The data produced in a sensor network is basically the 

readings of the sensing devices on the nodes, and can be 

demonstrated as relational data streams [25] is used to 

managing aggregation in in-network approach. Further, Tiny 

DB ropes metadata executive, in-network insistent storage. 

 

 

 
 

Fig. 2. The typical architecture of the sensor node 

 

 

In this section, we review the state of sensor network 

subsystems, and stipulate the compulsory background in 

database systems. In subsequent segments, we converse 

confronts in designing a sensornet database system. 

A. Adequate Sensor Network  Subsystems in WSN 

Examples of sensor devices are starting to arise on the 

horizon. One class of devices is demonstrated by the mote 

[23]. Motes contain an 8-bit processor, several megabytes of 

memory, a low baud-rate radio, and MEMS sensors for 

detecting temperature, vibration, and ambient light. A class of 

larger devices [30] comprises spread-spectrum radios, PC-

class processors, infrared dipoles, and electret microphones, 

and acoustic geophones. 

Working our way up the layers in Fig. 1, examples of such 

related research comprise: an well-organized operating system 

for sensor nodes [23]; low-level network self-configuration 

structures [17], comprising systems for localizing nodes [31], 

[32], [33], and performing time organization [11]; a data-

centric routing system [25], and possibly cooperative signal 

administering systems [39], [59] that can, for example, track 

moving objectives. 

B.  A Data Models In WSN 

In the context of a sensor network, the relational model is 

best explained as follows. Each sensor creates one or more  

 
 

Fig. 3. Sensor Network Software Subsystems 

 

 

tuples in network. The node that produces the tuple is called 

the source. 

For example, a temperature sensor might generate a tuple of 

the form <node Location, timestamp, and temperature>. Like 

wise, at a node that uses aural and vibration signal patterns to 

sense vehicle, signal processing software might produce a 

tuple of the form <nodeLocation, timestamp, 

vehicletype,detectionConfidence> . A compilation of similar 

tuples from a group of sensors forms a snapshot. In database 

vocabulary, this snapshot establishes a relational table, which 

is straight apportioned across the sensors in the unit. Relational 

tables are predictably accumulated on disks in conservative 

relational database management systems. Further, it is 

imperative to note that the tables we deliberate in the sensor 

network framework are all virtual tables, and they are 

relational views of the data created by a sensor network. 

Approaches to these virtual tables are inevitably translated into 

equivalent data-collecting operations on each appropriate 

sensor nodes, e.g., Get-Light Intensity, Get Temperature, etc.  

Virtual tables can be unrestrained, characterizing, for example, 

streams of data in database. 

The objective of the sensornet database proposal should be 

to ambit location transparency. Specifically outside the 

database community, the term relational database often 

suggests notions of strong agreements on storage steadiness 

and obtainability.  

C. Database Operators In WSN Database 

The following paragraphs describe some of these traditional 

database operators in a sensor network context. We stick to an 

SQL-style multi set semantics; this is typically the desired 

semantics for aggregation-centric functions [19]. The average 

temperature on the third floor is an example of an aggregate 

well defined on a temperature table containing of tuples from 

sensors in an in-building sensor network system. Most 

profitable databases afford shared aggregation operators such 

as SUM, COUNT, AVERAGE, MIN, MAX, and STDDEV. 

In conventional databases, the join operator is used to 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 8, DECEMBER 2016 

[ISSN: 2045-7057]                                                                        www.ijmse.org                                                                                      17 

associate data from multiple tables. Further join can be 

described as a collection over the cross product of a pair of 

tables; R on S denotes a join of tables R and S. However it is 

fairly mutual to appliance joins in a more effective fashion that 

does not for all braces. A common join establish is an equality 

match across columns of the two tables called as “an equi-

join”; e.g., deliberate a temperature table with tuples of the 

form <nodeLocation, timestamp, and temperature >. It also 

adopt that some sensor nodes with temperature sensors also 

have light sensors and each of which creates tuples of the 

form<nodeLocation, timestamp, lightlevel>. Moreover, an 

equi-join of these two tables on the nodeLocation column 

would construct a table with tuples of the form as: 

<nodeLocation, lightlevel, timestamp, temperature>, where 

tuples are only described for nodes that have both temperature 

and light sensors. Fiurther, there are numerous other relational 

operators like grouping, selection , and projection , difference, 

union, distinct aggregates ,and duplicate elimination, that we 

do not converse for conciseness. 

III. SENSORNET DATABASE SYSTEM AND FUNDAMENTAL 

APPROACHES TO DATA MANAGEMENT IN WIRELESS 

SENSOR NETWORKS 

In [24], a scalable and robust communication example, 

focused dispersion, is suggested. Attribute-value pairs are used 

to name data created by sensor nodes. A request node sends its 

attentions of termed data to objective sensor nodes. To 

progress the performance and save energy, intermediary nodes 

can cache data and might aggregate the data [27] increases and 

recovers the focused diffusion method particularly on tests. 

Tiny OS [16] is a free and open source operating system 

intended for WSNs. Tiny OS is an entrenched operating 

system, which is written in the nesC. Hence, Tiny OS can 

maintenance basic data requirements. Furthermore, users can 

improve their own applications based on Tiny OS. Tiny DB 

[28] is a data management system for WSNs constructed on 

Tiny OS. It can abstract information from WSNs by sending 

queries. Prominently, Tiny DB permits users designate the data 

they need to obtain by writing a SQL-like query. Furthermore, 

for answering a query; Tiny DB desires the data from sensor 

nodes in the network and directions it backs to a PC (System). 

In the phase of administering queries filtering and aggregation 

algorithms might be expended. For example, tree-based 

routing is used for query distribution, data collection and in-

network aggregation the queries. REED [18] spreads Tiny DB 

with the capacity to procedure joins operations between 

sensing data and static tables which is built outside the WSN 

Join operation is accomplished in network approach. Cougar 

[26] is another dispersed database system to sensor networks 

that pondered query languages, query optimization, 

aggregation processing, and multi-query optimization, catalog 

management [22]. 

We have said that a sensornet database permits any user to 

concern a query to the sensor network as if it is a database 

system and attain a response to that query. Further, there are 

two apparent recognitions of a sensornet database system. The 

first one is a centralized i.e., data warehouse recognition, 

where all data from each node in the network is sent to a 

selected node within the network involved to which is a large 

database system. This can be unreasonable in the sensor 

network perspective since it compels meaningful 

communication and that needs energy [29]. The other one, a 

distributed database, can be energy competent when the query 

rate is less than the rate at which data is produced. This 

sensornet database architecture respites on two descriptions. 

The first feature is in-network accomplishment of database 

operators in a database. When a user postures a query to the 

network, that query is distributed across the network [56].  

Moreover, another work has exposed that in-network 

administering of sensor data is important to attaining energy-

efficient interaction in sensor networks [18]. 

 

 

 
 

 

Fig. 4. Sensornet Database 
 

 

A second feature is that, the sensornet database will deliver 

estimated outcomes. In sensor networks system, the 

accessibility of data might be condensed as a consequence of 

communication loss instigated by impulses in wireless 

communication or by node failure. This proficiency, called 

online aggregation, has been suggested in the database 

literature for large on-line decision support arrangements [22], 

[20], [43]. The idea of expressing data engendered by sensors, 

as tuples is casually comparable to the concept of data naming 

conversed in the context of data-centric sensor network routing 

[45] and wide-area communication innovation [12]. The 

COUGAR project at Cornell University [5] is one of the first 

efforts to model a sensor network as database systems. It 

incorporates both the SEQ [34] preparation data model and the 

relational data model by acquainting new operators between 

sequence data and relational data in a data model. COUGAR 

does not presently center on abusing the special features of 

sensor networks nor does it discover the communication 

between query processing and networking system. Finally, 

Srivastava et al. [35] Point out the requirement for a data 

management middleware for sensor network data evaluation 

and mining, in the context of a particular application. 

Moreover, this paper takes this a step further and identifies 

specific challenges in realizing one aspect of this middleware 

relational database system. 
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IV. DATA COLLECTION AND OPERATORS USED IN 

 WSN DATA MANAGEMENT 

Data collection is extensively used for functions, which 

gathers all sensed data constantly. In [48], Chu et al. have 

suggested a mechanism, Ken, using restrictive data 

transmission to preserve energy by reporting only if the 

difference between the sensed value and the predicted value is 

yonder confident limits [7].  

A sensor node does not need to report sensed value normally if 

the predicted error is within the apparently, it is easy to store 

and access the data at Base station (BS). However, such 

methods (such as [31], [32], [44]) might be more applicable.  

As revealed in [33], the prediction models based on the 

progressive and spatial correlations of data work extremely 

well in Wireless Sensor Networks.  Further, a Model-based 

withholding is used to deliver uninterrupted data without 

incessant reporting. In addition, a key problem for, link failure 

and data suppression is attended. A mobile filtering method for 

error-bounded data gathering was projected in [26]. Jain et al, 

have constructed energetic techniques that service maximum 

filtering of data using a method called stochastic recursive data 

filtering, to protect possessions subject to conference precision 

standards [27].  Furthermore, two key issues in Data 

Management in Sensor Networks are Data Storage and Query 

Processing. Now we are going to start to highlight some of the 

research concerns by reflecting the completion of two database 

operators that are 1). joins and 2). aggregation. Hence, 

furthermore we’ll discuss precisely about these two 

terminologies. 

A. Use of Join in WSN Database Systems  

In the sensornet database, the intricacy of the join can differ 

with the specific query. The easiest example of a join is which 

joins the temperature and light tables by node location, can be 

capable nearby. That is, each distinctive node can achieve the 

join on the temperature and light tuples that it produces before 

communicating the joined tuple to the query creator [43]. 

A vibration sensor creates a tuple of the form <eventType, 

confidenceLevel, vibrationAmplitude,targetLocation>. To 

compare events from different sensors, one might desire to 

achieve an equijoin on the eventType column [46]. 

The database literature has considered numerous generic join 

implementation methods, such as nested-loop, hash join, and 

merge-sort [38]. These approaches are blocking. E.g., the hash 

join algorithms usually used in database systems [18] cannot 

create any tuples until one of the tables is fully examined. 

Furthermore, an assortment of non-blocking pipelined join 

approaches have been established in contemporary years. E.g, 

is symmetric hash-join [62]. It builds and maintains two hash 

tables, one for each input table. It is symmetric because the 

action for each tuple from either table is the identical. A 

simplification of symmetric hash-joins is the family of join 

methods called ripple joins [17], and join methods statistically 

sample the two tables to be combined, in order to construct a 

stream of joined tuples. 

1). Pipelining in a Database 

Pipelined joins, because they afford streamed partial 

answers can empower query improvement. Additionally, 

pipelining schemes like ripple joins form a low energy 

methodology to attain estimated answers and can be used 

collected with sampling [57]. 

2). Accurate Partitioning and Interactions with Routing 

Partitioning and Communications with Routing this 

methodology points to a procedure used in parallel database 

systems called partitioning; tuples are partitioned based on 

their join-column values, and reallocated on the fly across 

several nodes [10]. The objective here is both to influence 

parallelism, and to achievement aggregate RAM space across 

multiple nodes, and the sensor nodes may be memory-

constrained. Though, conventional databases did this on a fully 

connected cluster intersect whereas data-centric storage 

arrangements are ascendable over random topologies in the 

wide area. While these approaches are somewhat simplified of 

relational operators in a sensornet database and can be posed 

as a routing drawback [53].  

B. Use of Aggregation in Database System 

The mechanics of computing aggregates is theoretically 

query is flooded throughout the network or to a quantified 

geographic section, and the responses are routed on the reverse 

path trees. Aggregation on multiple nodes is not new and has 

been broadly discovered in the parallel database information 

[54]. 

1). A Taxonomy of aggregates functions 

Aggregation on multiple nodes is not new and it was 

established [16] to classify the different classes of aggregates 

in terms of their partitioning across numerous nodes in a 

cluster. In sensor networks, one key enactment objective is to 

spread the lifetime of the network by reducing 

communications and, aggregation functions can be helpfully 

characterized by the sizes of the partial state records that get 

passed nearby. For example, the AVERAGE aggregate is 

calculated by each node sending the SUM and COUNT of its 

readings to its parent, Further with parents sending the SUM of 

SUM s and COUNT of COUNTs upwards recursively. The 

root confirms the aggregate by dividing the total SUM by the 

total COUNT there. Hence the partial state for AVERAGE is 

two numbers as partial COUNT and partial SUM, and twice 

the size of the base readings. The first three categorizations 

were originally offered in the perspective of conventional 

databases [41]. This is particularly true in communicating 

settings: user conclusions of information predictors have 

shown that the first request is often for a big picture of the data 

that is used to choose what other questions to ask [58]. 

2). Energy-efficient Aggregation system 

The main evidence quality may be appreciably disturbed by 

packet loss only under convinced circumstances and only for 

certain kinds of aggregates. 

This methodology is appropriate to algebraic aggregates like 

AVERAGE and has been projected in for online aggregation 

in conventional databases [49], [50]. In this methodology, 

tuples in a table are consistently sampled and the resulting 
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average is presumed to signify the actual average. A deviation 

of this method that is appropriate to counting is a class of 

probabilistic counting methods that use logarithmic sampling 

[28, 13]. Recall that the results of a query are sent up the 

reverse path tree about the originator. For example, a partial 

SUM to its parent and a node can regularly supply the sum 

among all nodes within its radio range that are relations of its 

parent. Hence, we call this method flow-based because it splits 

up a count or value into many flows and thereby decreases the 

compassion of the aggregate to damage. Furthermore, to 

response convinced aggregates like MAX, the query originator 

could pose a hypothesis answer and see if anybody refutes it; 

this limits interaction costs to aggregation of refutations [63]. 

Moreover, we reflect counting based schemes are agreeable 

to hypothesis testing. Thus, an n -tile is a assumption of the 

form and there are exactly j nodes j=n readings whose value is 

greater than a value x R. 

Each plan has 3 input tables R, S and T and two join 

operators conjoining R with S, and S with T. Conclusively, for 

aggregates where the size of the fractional state is a function of 

the number of records and data solidity procedures are 

appropriate. 

In the database information, the statistical quality of 

imprecise outcomes can be robustly designated via confidence 

intervals for aggregate estimators run over i.i.d Samples of the 

database to do statistical research on precisely embodying the 

calculation excellence of consequences. 

V. DATA STORAGE AND COMPLEX QUERY 

OPTIMIZATION PLAN 

Several methodologies have been suggested to designate 

how to store data produced by Wireless Sensor Networks. 

One category of such storage solutions is that base station 

collects and stores all data as [17] might be more relevant to 

answer constant queries. For refining network lifetime, in-

network storage procedures have been adopted to resolve ad-

hoc queries. These kinds of structures are mainly created on 

the Data Centric Storage (DCS) concept [33]. In Data Centric 

Storage, appropriate data are considered and named rendering 

to its meanings [9]. The major difference among in network 

Data a Centric Storage scheme is using dissimilar events to 

sensors recording approaches. The mapping was intended 

using hash tables in DHT [33] and GHT [34], or expending k-

d trees in DIM [35], KDDCS [36,60], and STDCS [11]. 

STDCS usage sensor location as data indexing instead of the 

sensed values. Thus, STDCS reports sensors to sensors 

mapping instead of the readings events to sensors mapping. 

STDCS uses a spatiotemporal indexing to equalize query 

load among sensors. As it’s known, indexing methods can 

suggestively progress the data obtaining query presentation. 

For Wireless Sensor Networks, another advantage of using 

index is decreasing cost of data request distribution since the 

objective of data request can be gotten from A Data 

Management Tool called ES3N [1] uses Semantic Web 

procedures to accomplish and query network lifetime for 

Wireless Sensor Networks with the index. The works in [37] 

and [35] use a spatially dispersed hashing index procedure to 

explain range queries in a multidimensional area. The work in 

[12] suggested a dispersed spatial temporal index structure to 

trail affecting articles. The work in [38] adopted a time-based 

index preparation for event query dispensation. This 

characteristic delivers use accidental to store sketch 

information to answer queries based on historical data of 

sensor networks. For boosting query processing presentation 

and convertible energy, a dispersed index is essential to escort 

query advancing. In [39], we suggested a in-network antique 

data storage and query processing scheme based on dispersed 

indexing [3]. Already It’s been designated how database 

operators might be understood in a sensornet database. For a 

given query, the order of operator assessment can control 

resource operation. For energy competence, optimizing 

complex queries will be a significant objective. As we shall 

understand, in a sensornet database, a complex query 

optimization is familiarly connected to routing. To stimulate 

complex query optimization, reflect a complex join query of 

the form R on S on T recall that R on S means the join of 

tables R and S. Joins are commutative and associative, and 

hence the above expression is correspondent to the expression 

R on S on T. In the first plan, the join S on T is appraised first 

and the resulting table is joined with. Further, in the second, 

the join R on S is assessed first and the resulting table is 

joined with T. These two query tactics may have dissimilar 

costs. E.g., if R on S has a small number of tuples, the latter 

query plan may be more energy effectual than the previous.  

The search problem has three parameters: the set of feasible 

plans, an effectual search algorithm for outcome the minimum 

cost plan in the space and a cost model for guessing the 

competence of a plan. 

 

 
 

Fig. 5. Complex Query Optimization 

 

 

Inappropriately, such static plan execution may not be 

suitable for a sensornet database. Query costs are enormously 

dynamic in sensor networks [65], [66]. It is also disturbed by 

network parameters comprising topology, loss rates. Both the 

data and the interaction in a sensor network are extremely 

unstable, and hence a more adaptive query optimization 

methodology is needed [55], [61]. 

A. Adaptive Query Optimization Schemes 

In WSNs data gathered from a minidome Sensor Network. 

The Tiny DB project is based on a query language that 
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supports basic, aggregate, event based, temporal aggregate 

and even lifetime [2] suggests SPARQL query language For 

Query Processing, RDF is a focused, marked graph data 

format for expressive information in the Web system [64].  

The results of SPARQL queries can be results sets or RDF 

graphs. In fact, SPARQL is a Semantic based querying 

competences. This language backing a range of query types, 

including monitoring, exploratory, networks health, actuation 

and offline delivery queries. The consequences of SPARQL 

queries can be results sets or RDF graphs. In fact, SPARQL is 

a Semantic Web candidate reference currently SPARQL is 

entrenched in Jena which is a Java structure for construction 

Semantic Web applications that offers a programmatic 

atmosphere for RDF, OWL, and RDFS including a rule-based 

extrapolation engine [8]. Adaptive query optimization is an 

area of developing interest in the database community for 

server side query processing over remote databases [47]. 

  

 
 

Fig. 6. Adaptive Optimization Schemes 

 

 

Now briefly we describe about eddie that is mentioned to 

[4] for more feature. An eddy is a dataflow operator that is 

interposed between commutative query processing operators. 

Based on explanations of consumption and manufacture rates 

of the operators, an eddy routing policy can route received 

tuples to better operators first, in order to improve the flow of 

data through all the operators [40], [67]. Thus, eddies 

energetically do query optimization at runtime. As initially 

intended for consolidated administering, eddies route data 

among commutative operators on a single node. Further, 

another methodology is to have multiple eddies, and mark 

better global decisions about operator partitioning and 

placement as labeled in the preceding section [42]. This latter 

methodology is basically dynamic routing of tuples. The 

routing protocol is application specific same as the metrics.  

This is an attractive example of an incorporation of 

functionality that would, in more conventional organizations, 

have been measured as fitting to divisible layers [20]. 

VI. CONCLUSION 

The primary objective of a sensor network is to create 

worldwide meaningful information from raw local data 

acquired by specific sensor nodes. Prominently, this purpose 

must be accomplished in the perspective of persisting as much 

as conceivable the useful existence of the network and 

confirming that the network residues highly accessible and 

endures to deliver precise material in the face of safety 

occurrences and hardware breakdown. As novel principles 

based networks are unconfined and low power systems are 

repeatedly established, we will turn to see the extensive 

deployment of distributed databases in wireless sensor 

networks (WSNs). Further, Sensor nodes can be pretend as 

small computers, tremendously essential in terms of their 

boundaries and their apparatuses. On these days we can 

perceive a vide possibility and various applications of 

distributed database management in wireless sensing 

procedures. A homogenous query interface for programming 

data gathering from a wireless sensor network will 

impressively improve the development has distributed sensing 

purposes. An important conclusion of research in this area 

will be an considerate of the proper modularization of sensor 

network subsystems, and an escalation of the level of 

combination necessary between distinctive modules to 

accomplish a strong and competent system, database 

information has discovered sequential and other sequence 

centric data models. An example of such a model, which 

familiarizes sequence-based operators but does not essentially 

change the implementation and optimization procedures 

established for the relational model in database system. In a 

wireless background, data transmission pattern has been 

predictable, as an operational and ascendable contrivance to 

distribute frequently demanded evidence to a large number of 

patrons. 
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