
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 1, JANUARY 2017 

[ISSN: 2045-7057]                                                                  www.ijmse.org                                                                                        8 

A Self-healing Model for Web Service Composition 

in Dynamic Environment 
 

Aram Alsedrani
1
 and Ameur Touir

2 

1,2
College of Computer and Information Sciences, Department of Computer Science, King Saud University, KSA 

 

 

 
Abstract– Web service composition development is a complex 

and dynamic process. It is one of the challenges in distributed 

environments. Nowadays, the web environment becomes more 

dynamic due to the increase in the number of web services that 

are changing frequently. Therefore, the need for adaptive 

composition methods that act according to environment changes 

is advocated. Moreover, detecting changes and acting 

accordingly in the early stages of the composition will ensure the 

reliability and prevent, in some cases, the expensive re-planning 

process. We aim in this paper at proposing a web service 

composition model based on service clustering to react with 

service failure occurred during any phase of composition 

process.  

 

Keywords– Web Services, Service Composition, Service 

Clustering and Self-healing Composition  

 

I. INTRODUCTION 

ince the emerging of web service paradigm, it has been 

widely used and gains users acceptance, which encourages 

many developers to deploy their applications as web 

services [1]. This success, typically, leads to the growth in the 

number of available web services over the net and thus 

increasing the dynamicity of web service environment. In 

other hand, web service composition process that is based on 

integrating primitive web services into one complex service 

must rely on reliable and valid web services [2]. Web services 

in dynamic environment are updated on-the-fly which 

threatens the success of service composition process. 

Therefore, advanced approaches that react to changes in web 

service environment to insure the accuracy of the composition 

process becomes of highly demands. In this paper, we 

introduce the self-healing model for web service composition 

that monitors the composition process from early stages in 

order to recover service fails directly when it occur. 

Most existed service composition methods handles the 

dynamism of the web environment in the execution phase and 

treats the environment as static in early phases. In such 

situations, any change will be detected and handled after their 

occurrence. This mechanism causes undesirable problems at 

execution time that leads to decrease the composition 

performance with re-planning or re-selecting overhead. As 

example of these researches is the recovery mechanism 

introduced in [3]  and [4] that is based on validating the 

services in the composition in execution phase and replacing 

the faulty services by a sub-diagraph with the same 

constraints. Moreover, the work by [5] presents service 

composition framework based on performance prediction. At 

runtime, when a service is predicted to be failed according to 

its quality values, a re-selection algorithm will be triggered to 

replace the failed service before it invoked. Another example 

is the research by [6] that utilizes the ECA rules in 

multimedia conference systems to manages web service 

composition in the case of updating user requirement. The 

proper event will trigger when the business process request is 

changed and allow service rescheduling. 

We aim in this paper at proposing a web service 

composition model based on service clustering to react with 

service failure occurred during any phase of composition 

process. The proposed model consists of two parts: the service 

clustering components that group the similar web services 

based on their precondition and effect into one task cluster in 

order to recover the failed web service with equivalent one 

from its cluster, and groups the similar tasks in to one job 

cluster. The second is the composition engine component that 

is monitored during its entire process in order to detect 

changes and react accordingly by searching for a substitution 

to the fault service. 

The rest of the paper is organized as follow, in section two; 

we provide background information on the service 

composition and the OWL-S type of service description uses 

in our model. In section 3, we propose the self-healing model 

including the lustering mechanism and the composition 

engine, and then the system model components are described 

later in the same section. We conclude our paper in section 

four. 

II. BACKGROUND 

A. Web Service Composition 

Web service composition is the process of combining 

several services into one service with upgraded functionality 

[7]. Generally, the composition lifecycle consists of four 

phases as shown in figure 1. Planning is the first phase, which 

aims at decomposing the requested service based on the user 

inputs into an abstract set of tasks known as the abstract 

plan[8]. Then, the service discovery is the process of 

searching for candidate web services to fulfill the tasks in the 

abstract plan. The discovered services for each task are 

equivalent in their functionality but differ in the non-

functional requirements [9]. 

Moreover, The third phase is the selection which is the 

process of selecting the optimal web services from the set of 

discovered candidate services based on a set of requirements 

S 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 1, JANUARY 2017 

[ISSN: 2045-7057]                                                                  www.ijmse.org                                                                                        9 

[10]. The optimality of a web service is determined based on 

its QoS values as well as the user preferences. The last phase 

of service composition is the execution of the recently created 

execution plan. The process involves invoking services, 

passing data between participant services and verifying the 

composed service [11]. 

B. OWL-S 

There are many standards to describe web services as 

WSDL and OWL. In our model we are building the 

composition plan based on semantically matching the 

precondition of a web service by the effect of another. For 

that reason, a semantic web service description is needed. 

Some of description standards as WSDL list the syntactic 

description of a service; others describe the web service 

semantically as OWL and OWL-S. 

OWL-S is build based on Web Ontology Language (OWL). 

The motivation for defining OWL-S is the use of ontologies 

to describe web service allowing services to be machine-

interpretable. Thus, it enables the automation of Web service 

discovery, web service invocation, and web service 

composition [12]. 

The service ontology provides three type of service.  First is 

the service profile that describes what the service dose, it 

contains tags as pre-conditions, result, inputs and outputs. 

Second is the service grounding which describes how to 

access the service. Third is the service model that describes 

how to use the service by detailing the semantic content of 

requests and condition must be validate to reach service 

outcomes [13]. 

III. SELF-HEALING WEB SERVICE    

COMPOSITION MODEL 

In this section, we present the clustering based model for  

web service composition. The model consists of two parts. 

First, an offline part that classifies the web services based on 

their constraints (precondition and effect) into task clusters, 

consequently, groups the similar tasks into job clusters. The 

second is an online part that receives the requested service 

and user inputs then builds the composed service. The 

composition process in our model is monitored through its all 

phases to detect any failure that could threaten the 

construction of the composed service. 

A. Service Clustering 

Service clustering is the process of classifying the web 

services that stored in the service repository into tasks based 

on their constraints. And then group the functionally similar 

tasks into jobs. In this mechanism we maintain two types of 

repositories: task repository and job repository. 

To demonstrate the service clustering, assume the 

constraints dependencies in Fig. 2(a) graph denoted as 

G(V,E).  Whereas V is the set of constraints between web 

services, and E is the set of tasks that leads the precondition 

vertices to the effect vertices. In another word, the expression 

T1 (u, v) that is extracted from the graph branch “u -- T1 -- > 

v “denotes that ‘u’ is the precondition of T1 and ‘v’ is the 

effect of T1. 

The task clustering is the process of grouping all the similar 

web services in to one task. Each newly added web service to 

the service repository will trigger the task clustering process 

that will insert the new service to a corresponding task cluster. 

In case of no task cluster matches the service constraints, a 

new task cluster will be created based on the service details. 

The task repository as in Fig. 2(b) consists of a set of task 

clusters generated based on the graph of Fig. 2(a). Each task 

cluster is a set of web services having the same precondition

 

 

 
 

Fig. 1: Web service composition process 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 1, JANUARY 2017 

[ISSN: 2045-7057]                                                                  www.ijmse.org                                                                                        10 

and result. We assume that each web service is atomic and 

dose not composes of other services. 

In the other hand, the job repository is constructed by 

clustering the similar tasks in to one job. In fact, the 

repository is built in two levels: first, for each task in task 

repository a job is created in job repository, second, a 

composition process is performed in order to generate 

composite tasks for the job clusters. For each job cluster, the 

job precondition is inputs to a planning process in order to 

match the precondition with some task effect until reaching 

the job effect. Therefore, each job cluster consists of a single 

atomic task and several composite tasks. Fig. 2(c) represents 

an example of the job repository that is built based on the 

constraints of Fig. 2 (a). The expression J5(x,z)  is a job with 

precondition of ‘x’ and effect of ‘z’, the jobs set consist of 

three tasks that all leads ‘x’ to ‘z’ in different paths.  

The clustering is a continuous process performed whenever 

a new service is assigned to the service repository. Moreover, 

the clustering process is done in the background of the model 

which will not interrupt the composition process. 

B. Clustering-based Web Service Composition 

The composition model receives the user requested service 

and initial input required through its composition engine part 

as in Fig. 3. Then the planning process begins by semantically 

match the user input with a job preconditions. And 

continually, the planner matches the effect of the last job in  

the plan with some existed job precondition until the 

requested service is achieved. The outcome of the planning 

phase is a plan which consists of connected jobs that leads the 

user inputs to the user requested service.  

The second phase of the composition is selecting the best 

web service for each job in the plan based on its QoS 

attributes. For each job in the composition plan, the candidate 

task from the corresponding job cluster is retrieved, then the 

candidate web service for this candidate task cluster substitute 

the job in the plan. The candidate web service is chosen 

among similar services in the same cluster if it offers the best 

quality attributes. Therefore the composition plan will consist 

of connected web services that are ready to be executed. 

At last, the executer will receive the web service plan and 

begin to invoke each web service sequentially. The output of 

one service is passed by the executor to the next service as an 

input. The process will continue until producing the desired 

output of the composed service. 

The web service repository in the model is monitored 

during the composition phases mentioned previously to detect 

any changes that affect the composition. In case of web 

service failure, the monitor component in Fig. 3 will trigger 

the recovery process and attempt to react and solve the failure.  

The recovery process is performed in two levels. The first 

level is based on substituting the faulty service with atomic 

similar one from the exact task cluster. The second is 

performed in case of there is no atomic alternative found, it is 

based on searching the job cluster to find a composite task 

 

 

 

 

 
 

Fig. 2: Service Clustering Example 

 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 1, JANUARY 2017 

[ISSN: 2045-7057]                                                                  www.ijmse.org                                                                                        11 

that substitute the faulty service. Therefore, the recovery 

process acts only in the boundary of the job cluster without 

interfering with the rest of the jobs in the composition plan. 

By monitoring the process of composition from early 

phases, the reacting to solve service failure, if any occur, can 

prevent the composition failure and reduces the time needed 

to recover. In another word, if a web service, that is part of the 

composition, fails during planning phase and detected in the 

same phase then, in worst case, the recovery will be the time 

needed for re-planning the composition. Whereas, if the fails 

detected in execution, as in [14] and [15] for example, the 

time needed for recovery will cause the re-planning and re-

selecting then re-executing of the composition. 

C. System Model 

Fig. 3 demonstrates the clustering-based web service 

composition model. The model is divided, in general, in two 

parts: the clustering part and the composition engine part. 

Each component of the model will be described in this section 

in details.  

Semantic Matcher: this component is responsible of 

finding a semantically matches between a precondition and an 

effect. The matcher could be developed using several 

similarity approaches. One of the approaches as example is 

the “WordNet-based semantic similarity measurement” [16]. 

The tool is a dictionary-based semantic matcher that accepts 

two sentences and produce a percentage that represent the 

degree of similarity between inputs. 

Monitor: the monitor is the component that listens 

continually to the service repository in order to detect any  

changes occurred. When a change is occurred, the type of the 

change is sent to the corresponding recovery process of the 

on-going composition phase in the exact time of the fail 

occurrence to deal with that event. 

Clustering: 

OWL-S parser: that responsible of receiving the semantic 

web service description in OWL-S format and extracting the 

needed service parameters for the composition process. The 

main service parameters that are extracted by the parser are 

the service inputs, output, service constraints (precondition, 

effect), and service description. After that, the parser stored 

that information into the service repository. 

Task clustering: the clustering process is implemented in 

the task clustering component. Each service in service 

repository will be clustered based on their precondition and 

effect parameters to specific task and stored in the task 

repository. The single cluster in the task repository consists of 

task name, precondition, effect and the set of equivalent web 

services. 

Job clustering: this component is responsible of clustering 

the similar tasks into one job cluster. It generates all possible 

composite tasks to be added in job clusters. The job clusters 

will be stored in the job repository. Each entry in the job 

repository includes job name, precondition, effect and the set 

of tasks. 

Composition Engine: 

Planner: in which the planning process is implemented. 

The planner will receive the requested service (UR) and user  

 

 
 

 

 
 

Fig. 3: Clustering-based Web Service Composition Model 

 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 1, JANUARY 2017 

[ISSN: 2045-7057]                                                                  www.ijmse.org                                                                                        12 

inputs (UI) from the user. The planner start processing the UR 

by fined a match between UI and some job affect by passing 

those values to the semantic matcher and continually 

constructing the plan until reaching the UR. Whenever an 

event that affects planning occurred, the recovery process will 

be triggered to react to that event and continue planning. 

Finally the composition plan will be delivered to the selector 

as a graph of connected abstract jobs.  

Selector: the selector component accepts the composition 

plan and substitutes each job with the candidate web service 

from the same cluster to construct the execution plan (EP). 

The selection recovery process will be triggered if the 

candidate web services are failed. The process searches then 

for an alternative service with the best quality among the 

remaining services in the job cluster. Then, the execution plan 

EP will be delivered to the executor. 

Executor: the last component in the composition engine is 

the executor that receives the EP and delivers the composite 

service output to the user. The executor invokes the web 

services in the plan starting from the first service and 

continually passes the output from one services as input for 

the next to be invoked. If one service within the EP fails 

before invoking it, the execution recovery process will be 

activated to substitute the faulty service from the task cluster.  

IV. CONCLUSION 

In this paper, we present a web service composition model 

based on clustering the similar available web services in 

service repository into tasks, and cluster the similar tasks into 

jobs. By proposing the service clustering technique, we aim at 

three goals: First, minimizing the composition problem state 

space within jobs rather than services. Secondly, the ability of 

fast recovery in case of service failure by substituting the 

faulty service from the corresponding cluster. Third, isolate 

the faulty web service in its job boundary and not affecting 

the rest of the well composed service. 

REFERENCES 

[1] K. Wiesner, R. Vacul, M. Kollingbaum, and K. Sycara, 

“Recovery Mechanisms for Semantic Web Services,” in 

International Conference on Distributed applications and 

interoperable systems (DAIS), 2009, pp. 100–105. 

[2] N. H. Rostami, E. Kheirkhah, and M. Jalali, “Web Services 

Composition Methods And Techniques: A Review,” Int. J. 

Comput. Sci. Eng. Inf. Technol., vol. 3, no. 6, pp. 15–29, 2013. 

[3] H. Saboohi and S. Abdul Kareem, “An automatic subdigraph 

renovation plan for failure recovery of composite semantic 

Web services,” Front. Comput. Sci., vol. 7, no. 6, pp. 894–913, 

2013. 

[4] S. Gupta and P. Bhanodia, “A Flexible and Dynamic Failure 

Recovery Mechanism for Composite Web Services Using 

Subset Replacement,” Int. J. Sci. Res., vol. 3, no. 12, pp. 

1886–1890, 2014. 

[5] Y. Dai, L. Yang, and B. Zhang, “QoS-Driven Self-Healing 

Web Service Composition Based on ã,” J. Comput. Sci. 

Technol., vol. 24, no. 2, pp. 250–261, 2009. 

[6] Z. Ying, C. Junliang, C. Bo, and Z. Yang, “Using ECA rules to 

manage web service composition for multimedia conference 

system,” in 2nd IEEE International Conference on Broadband 

Network & Multimedia Technology, 2009, pp. 545–549. 

[7] Q. Z. Sheng, X. Qiao, A. V Vasilakos, C. Szabo, S. Bourne, 

and X. Xu, “Web services composition : A decade ’ s 

overview,” Inf. Sci., vol. 280, pp. 218–238, 2014. 

[8] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX : A Hybrid 

Semantic Web Service Matchmaker for OWL-S Services,” 

Web Semant. Sci. Serv. Agents World Wide Web, vol. 7, no. 2, 

pp. 121–133, 2009. 

[9] A. AlSedrani and A. Touir, “Web Service Composition 

Processes: a Comparative Study,” Int. J. Web Serv. Comput., 

vol. 7, no. 1, pp. 1–21, 2016. 

[10] M. Moghaddam and J. G. Davis, “Service Selection in Web 

Service Composition: A Comparative Review of Existing 

Approaches,” in Web Services Foundations, First., A. 

Bouguettaya, Q. Z. Sheng, and F. Daniel, Eds. New York: 

Springer, 2014, pp. 321–346. 

[11] A. KIM, M. KANG, C. MEADOWS, E. IOUP, and J. 

SAMPLE, “A Framework for Automatic Web Service 

Composition,” Washington, USA, 2009. 

[12] J. Sangers, F. Frasincar, F. Hogenboom, and V. Chepegin, 

“Semantic Web Service Discovery Using Natural Language 

Processing Techniques,” Expert Syst. Appl., vol. 31, pp. 1–27, 

2013. 

[13] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, 

S. McIlraith, S. Narayanan, M. Paolucci, and B. Parsia, 

“OWL-S: Semantic Markup for Web Services,” W3C Member 

Submission, 2004. . 

[14] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni, 

“Exception Handling for Repair in Service-Based Processes,” 

in IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 

2010, vol. 36, no. 2, pp. 198–216. 

[15] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, 

“QoS-Aware Replanning of Composite Web Services,” in 

IEEE International Conference on Web Services (ICWS’05), 

2005, pp. 121–129. 

[16] T. Simpson and T. Dao, “WordNet-based semantic similarity 

measurement,” The Code Project Open License (CPOL), 2010. 

[Online]. Available: http://www.codeproject.com/Articles. 

[Accessed: 01-Jan-2016].

 


