
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 1

Abstract—Software development is a critical task that requires a

detailed and well-structured guideline in the form of software

development process model. A good software development

process model can play very important role in developing high

quality software. Traditional software development models like

Water fall, RUP, V-Model and Spiral Model remained dominant

in software industry for a long time but to cope with growing

needs and technology change in software industry, software

developers tried to explore more improved software development

models that lead to advent of agile development models. Agile

models were warmly welcomed by software community because

of their focus towards customer satisfaction, changing

requirements and early software delivery. This paper provides a

comprehensive review of different agile models which are used in

software industry.

Keywords— Software Development Process Models, Agile

Models, FDD, TDD, DSDM and Crystal Family

I. INTRODUCTION

gile software development methodologies provide a more

efficient and lighter way of development that build a

software iteratively and incrementally. Intention behind agile

software development models was to find out new and more

efficient ways of software development that can overcome the

limitations of traditional software development models. Lesser

user interaction, prolong development duration, high cost, no

adoptability and most importantly no response to changing

user’s requirement were major problems in traditional

software development models that forced software experts to

find new directions of software development.

The term agile was coined in 2001 when seventeen well

known software developers met in Utah to explore new and

improved ways of software development. They shared their

experiences and observed that there were some common

software engineering practices, helpful in developing high

quality software within predefined time limit [1]. Agile

software development models shifted the development focus

from process to people and valued things that were neglected

in traditional models. As stated in agile manifesto “we are

uncovering better ways of developing software by doing it and

helping other do it. Through this work we have come to value.

- Individuals and interactions over processes and tools

- Working software over comprehensive documentation

- Customer collaboration over contract negotiation

- Responding to change over following a plan

That is, while there is value in the item on the right, we

value the item on left more [1], [2]”.

Agile manifesto defined twelve agile principles that make

foundation of agile software development. These principles

include [1]:

- Customer satisfaction by early and continuous delivery of

workable software.

- Changing requirements are welcomed even in later

development stages

- Frequent collaboration and communication among

customers and developers.

- Frequent delivery of working software.

- Support and motivate trusted people involved in software

development.

- Use face to face communication.

- Working software is main measure of progress

- Constant pace is maintained through sustainable

development.

- Pay attention to good design continuously.

- Keep things simple.

- Self-organizing teams can develop better architecture,

requirements and design.

- Team regularly reflects how to become more effective.

 There are many agile models like Extreme Programming

(XP), Scrum, Test Driven Development (TDD), Dynamic

System Development Model (DSDM), Feature Driven

Development (FDD) and Crystal methods etc. All these agile

models follow agile values and principles with some key

practices. These practices may not be new for software

industry but provide much better result when applied under

agile values and principles [3]. Agile principles make it

possible for a development process to be more adoptable to

change, reduce cost and time of development as mentioned in

[4], [5].

Agile software development models build software in

multiple iterations and increments [2], [3]. Each iteration end

with a workable product that help in getting early feedback of

customer. Agile teams are self-organizing teams in which

members work in close collaboration with each other. Simple

design with no extra details is preferred over complicated

ones. This help in delivering product more reliably and timely.

Faiza Anwer
1
, Shabib Aftab

1
, Usman Waheed

1
 and Syed Shah Muhammad

1

1
Department of Computer Science, Virtual University of Pakistan

 faiza.anwer28@gmail.com, shabib.aftab@gmail.com

Agile Software Development Models TDD,

FDD, DSDM, and Crystal Methods: A Survey

A

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 2

In contrast to traditional models, customer remain involve

throughout the development process to keep it on right way.

Unnecessary documentations is avoided in order to pay more

attention towards productive activities. Due to these features

agile models are more flexible and adoptable [2]. This study is

conducted to explore agile models that are relatively lesser

known. This paper discusses Test Driven Development

(TDD), Feature Driven Development (FDD), Dynamic System

Development Model (DSDM) and Crystal Method in detail

that will be greatly helpful for researchers, academicians and

developers.

Rest of the paper is organized in following sections. Section

II is about literature review. Section III provides detail study

of agile models including TDD, FDD, DSDM and crystal

methods. Section IV is discussion that sums up then agile

models. Finally section V concludes this paper.

II. LITERATURE REVIEW

Due to features like, ability to incorporate change, rapid

development and emphasis on quality, agile software

development models received a huge acceptance from

software industry. A number of agile models exist that have

their own advantages and disadvantages. Researchers tried to

explore these models in different studies; however most of

them focus on different aspects of agile models and lacks

complete picture of whole process. Some of these are listed

here. In [2] authors explained concept of agile development

and discussed different agile development models. In [3]

authors reviewed and analyzed agile models for the sake of

comparison. In [6] authors discussed and compared Scrum,

XP and Kanban agile methodologies. In [7] authors have

provided overview of some agile methodologies including XP,

Scrum, DSDM, FDD, Crystal methods and Lean development.

In [8] authors discussed different agile models with their

strengths and weaknesses and checked their applicability in

industry. A review of agile development models is conducted

in [9].

III. PROCESS MODELS

A. Test Driven Development

 Test driven development (TDD) is an agile software

development process model. Like other agile models, it builds

software in small iterations which required to write an

automated test first followed by a small piece of code that can

pass that test, code is refactored later for improvement. TDD

is actually opposite of traditional software development

approach that starts from design and coding followed by

testing. In TDD, testing is performed before coding. The

intent behind TDD was to reduce defect rate and improve

code quality. TDD helps in writing clean code to implement a

requirement by getting quick feedback through testing. Code

is refactored accordingly, to make it concise [10]. TDD

usually requires an automated testing framework like JUnit,

NUnit, CppUnit.

 TDD was formally introduced as a software development

model in 2003 by Kent Beck in his book “Test Driven

Development: By Example”. However an approach similar to

TDD, was already used by NASA developers in 1950 while

working on project Mercury [11] [12]. Kent Beck used Test

first technique as a practice in Extreme Programming where

programmers write unit test before development [13].

Successful application of test first technique gave an idea to

use it as a development model. Use of test first development

with refactoring results in Test Driven Development (TDD)

process model. In [14] two rules for TDD has been defined:

- Always write a code only if a test fails.

 - Always remove duplication.

In the light of these two rules, TDD can be defined as an

iterative development model in which programmer drive test

cases using requirements, before writing the code then code is

written for small increment of functionality to pass the test and

in case of test failure code cab be refactored iteratively to

enhance the quality and design. TDD helps to reduce the

defect rate in code. This improves the code quality that

ultimately reduces test cost and testing effort. More detailed

five step process for test driven development is discussed in

Fig. 1 [14].

- Add a new test case for small functionality.

- Run all the test cases and check if new test case fails.

- Write code that passes the test.

- Run all test cases again to see whether all test pass.

- Refactor code to remove duplication.

Fig. 1: Work flow of Test Driven Development

1) TDD Life Cycle: Test driven development life cycle

consists of five steps.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 3

Add a test: In TDD, development cycle starts by writing a

test for new functionality. Developer writes an automated test

for new functionality. This require a deep understanding of

requirements. Writing tests before code helps developers to

concentrate on requirements and exceptional conditions of

feature to be added. User requirements and use cases are used

to draw these tests.

Run all test cases to check if the new test case fails: In this

step developer run all the tests. Which obviously leads to

failure of new test as there is no code available to implement

required functionality.

Write the code: Developer write code enough to pass the

test. This code may not be a perfect one but at this stage, only

concern is to write a code that will pass test. This code can be

refined in later steps.

Run all test again: Developer run all the test to check

whether the new code works. If it works without effecting the

already passed tests, it means that new code satisfy all the

requirements and not damage the existing code. If it is not the

case then new code should be changed until all tests pass.

Refactor code: This step helps in refining the code and

making it more clean and concise by removing duplications.

Refactoring code, is actually changing the code without

disturbing its external behavior. This reduce complexity and

increase readability and maintainability of code. This stage

also insists to review the code according to design patterns.

These steps are repeated for each required features.

2) Foundation Principles of TDD: There are three

foundation principles of TDD that make it popular among

programmers and also help to enhance the productivity,

quality and maintainability of software [15]. These principles

are test first, incremental development and frequent testing.

Test First: Being a test driven development, tests play

central role in whole development process. Tests are used to

steer the whole process. Every development cycle starts from

writing a test for required functionality. TDD use automated

testing framework usually that help to test any time. These

provide an opportunity to get exact and quick feedback about

program behavior.

Incremental Development: Incremental development

naturally decomposes the project in small more manageable

chunks. This improves the programmer’s concentration about

problem and also offers a chance to plan better and develop

better.

Frequent Testing: Frequent testing provide feedback to

programmer about developed tasks. This helps to catch the

defects near its origin and decrease possibility of their

propagation any more. This ultimately improves quality and

productivity.

3) Test’s Quality in TDD: Test used in TDD have different

purpose and intent than tests written to check software quality.

Test in TDD are written by programmer rather than testers.

These tests should be small, compact, more focused to a single

feature of software [14], [15]. These execute quickly to

provide quick feedback to programmer. The basic objective of

these tests is to drive the development process. However TDD

also incorporates other testing mechanism for verification and

validation of software quality.

In [14] author stated some directions that should be followed

to write TDD’s special tests. Here are some guidelines about

writing these tests.

- These tests are written by programmer not by testers.

Programmer should feel easy to write a test about a

requirement in order to correctly use its results. It will be

helpful to use familiar test tools and languages, with which

programmer feel comfortable.

- Test should be readable that not only served as test cases

but also help in understanding source code.

- These tests should execute fast otherwise it will not be

helpful in test driven activities.

- Test used in TDD should be independent of each other.

One test failure should not affect output of other tests.

However executing any combination of these tests should be

possible.

- Deterministic tests helps in increasing programmer’s

confidence. A test having no guarantee about its execution

leave a negative impact.

- Test should be executed automatically with no human

interaction. This will be helpful in avoiding human errors and

improving the confidence on test results. TDD mostly use

automated testing framework.

- Writing test also give deep insight into design decision.

So test will be helpful in designing activities.

4) Misconceptions about TDD: Although TDD is getting

popularity and acceptance in software industry however there

are still some misconceptions about TDD that must be cleared.

One of the most common misconception about TDD is due

to its name. A common thought is that TDD is a testing or

quality assurance activity using unit tests alone [15], [16].

TDD uses testing for software development not for testing

purposes. Tests are used to get feedback to refactor code.

These are not simple unit tests.

 It is considered that test written by programmers also serve

a purpose of software testing completely. Actually this is not

the case along with these tests, independent testing and quality

assurance activities have their own role that cannot be

replaced. Programmer have ability to write TDD’s tests but

may not have skills required to write stress test, performance

test, system test etc.

People think while using TDD, all possible tests should be

written before starting actual development [16]. In fact in

TDD programmer write a single test at a time that relates to a

small required functionality of software. This process goes on

iteratively to build a complete software.

It is considered that TDD is difficult to learn and practice.

Actually it is not the case but it requires a change in thinking

with a disciplined decision making and problem solving

capabilities of programmers.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 4

5) Advantages of TDD: TDD is a relatively new agile

model that is gaining popularity among developers due to its

benefits. Here are some of the advantages of TDD.

- In traditional development methods testing activity is

performed very late. In later stage of development, defect

debugging and maintenance becomes more tedious and may

cause more defects injection in software. Test first approach

of TDD helps in finding defects earlier and near to its origin.

This reduces defect rate and cost of debugging greatly [17].

Due to incremental approach and quick feedback from testing,

external quality of code can be enhanced greatly [18].

- TDD improves efficiency as it works in small iterations. In

each iteration tests provide quick feedback whenever a new

code is added. This helps in finding and correcting defects

earlier and stops defect propagation.

- Automated test written during TDD iterations are very

helpful in enhancing the code quality. These test are used in

regression testing during maintenance activity.

- TDD works in small iterations that divide the overall

development in small and shorter more manageable parts. This

provides opportunity to concentrate and develop more

effectively [19].

- Code refactoring improves software design related issues.

TDD helps in writing code having loose coupling and high

cohesion.

- Programmers write simple classes and modules to implement

a small functionality that reduce the size and complexity of

code [16].

7) Disadvantages of TDD: TDD is a good development

approach but there are some limitations also.

- TDD is a disciplined approach requires some special skills

(like writing test cases which is duty of testers usually) that

programmers feel difficult to practice [11].

- TDD cannot be used in all situations especially software

projects that require synchronization [11] [14]. Developer

must be able to check whether TDD can be applied or not.

- Managing test suits is another problem with TDD. Proper

maintenance is required to use these test suits.

- TDD lacks documentation. Documentation helps in

maintenance process but in TDD only test cases are used for

that purpose [20].

- Sometimes, TDD become more time consuming because of

repeated test failure.

- TDD does not provide any guidance about management

aspects of software projects. It only focus on engineering

related activities.

D. Feature Driven Development

 Feature Driven Development (FDD) is an agile model that

uses short iterations to develop a functional software. FDD

was first used by Jeff De Luca in a large project in 1997 when

he realized that traditional models are not useful in delivering

large, complex software project in time. In 1999, Jeff De Luca

and Peter Coad presented the FDD model by combining the

concept of feature with software development process in their

book Java Modeling in Color with UML [3], [21]. Later in

2002 Stephen Palmer and Mac Felsing presented its more

generalized form in their book “A practical Guide to Feature

Driven Development”.

FDD is highly adaptive agile software development model

that focus on quality during all phases of development. As its

name suggests, feature is very important aspect of FDD. A

feature is any valued function that user wants in software.

However FDD mainly focus on design and building phases

[3]. It develop frequent tangible results and provide progress

and status information about project.

1) FDD Life Cycle: FDD process consists of five sequential

processes that are performed iteratively to build software in

increments. These processes are Build a feature list, Plan by

feature, Design by feature and Build by feature [3], [22].

Fig. 2: FDD Process Life Cycle [3]

Develop an overall model: In this phase team members

including domain and development experts, try to define the

context and scope of the project to be developed. For this

purpose a high level walkthrough meeting is conducted

followed by a detailed walkthrough for each domain area.

After completing this, multiple object models are developed

by different domain expert which are then reviewed. One of

them is selected as a model of domain area [21]. In some

cases more than one model are merged to form a final object

model for the problem. This model can be refined further in

later stages of development. There is no specific requirement

gathering and managing activities used in FDD.

Build a features list: Being a feature driven model, FDD

development process focus on features. A feature is a valuable

function that has some business value in software. After

making the object model it is easier for team to define a

comprehensive list of features to be developed. These features

are defined for all domain areas and grouped in features sets.

Features in the list should be implemented in maximum two

weeks. Any feature requiring more than this can be broken

down in to smaller tasks. The features list is finally approved

by the customer.

 Plan by feature: Project manager, development manager

and chief programmer are the roles who are involved in

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 5

planning. In this phase priorities are assigned to features by

keeping in view the features dependencies, risk involved,

complexity and team workload. Then chief programmer assign

each feature class to a specific developer called class owner.

Schedule detail is also assigned to each feature class.

Design by feature: This is an iterative activity that can last

from few days to two weeks maximum. In this phase design

packages are produced for each class by chief programmer

and class owners. Sequence diagrams are developed by chief

programmer and class owner collectively however class

diagrams and object models are developed by respective class

owners. Finally design packages are reviewed and inspected

for approval.

 Build by feature: This is an iterative phase in which

multiple features teams actually implement the design classes

and modules. After coding, code inspection, unit testing and

integration testing is performed. Classes are built in the

sequence which these are defined in plan by feature phase.

After completing an iteration successfully, developed features

are included in main build and another iteration with new

features set is started again. Every feature has to achieve six

milestones that are domain walkthrough, design and design

inspection from design phase and code, code inspection and

promote to main build, from build phase. When all milestones

are completed, track by feature chart and burn up chart is

updated to reflect the progress. All these activities should be

completed in maximum two weeks.

2) FDD Roles: In FDD there are three types of roles; key

roles, supporting roles and additional roles [3]. This section

explain key roles in FDD which includes, project manager,

development manager, chief architect, chief programmer,

class owner, domain expert and feature team.

Project Manager: Project manager is the leader who is

responsible of providing administrative guidance throughout

the project. He manages the staff and provide best available

working environment by protecting them from outside

interference. Project manager also decide about scope,

schedule of the developed project. He reports project progress

and manages finance and budgetary issues.

Chief Architect: He is responsible of overall design of the

system. His decision is considered final about design related

issues. He also guides and provides necessary training session

to team.

Development Manager: Daily development activities are

supervised by development manager. He must have good

technical skill to resolve the issues not handled by chief

programmer. He is also responsible of resolving resource

conflict among team members.

Chief Programmer: Chief programmer actually leads

overall development activities. He leads the small teams

during analysis, design and coding different feature sets. He

should have good experience in development to lead the team.

Chief programmer select features set and respective class

owner for each iteration and resolve any issue in implementing

these classes.

Class Owner: These are responsible of designing, coding

and testing features sets assigned by the chief programmer.

They work under the supervision of chief programmer.

Domain Expert: These are the persons having clear

understanding of the business for which software is being

developed. These can be clients, sponsors, users or business

analyst. They give directions for the system to be developed

by providing sound knowledge. They must have good

communication skills to convey the requirements to the

development team. Their active participation and good

knowledge about domain can enhance the chance of project

success.

Feature Team: Feature team is temporary group of

developers working on some feature sets during an iteration.

This team disbanded when a feature set is implemented

successfully and promoted to main build.

3) FDD Artifacts: Document and artifacts produced during

FDD process are Features list, Design packages, Track by

feature chart and Burn up chart [22].

Features List: A feature is a small valuable function that

have some business value for client, Collection of these

features in a list makes features list. Each feature in the list

should be implemented in two weeks duration otherwise it can

be broken down in smaller features.

Design Packages: This includes sequence diagrams, class

diagrams and module design information designed by chief

programmer and class owners.

Track by Feature Chart: This chart is used to track the

project progress. This contains all the features to be developed

and dates of completed feature sets.

Burn up Chart: This is also used to track the project

progress. This chart plot dates along X-axis and number of

completed features along Y-axis. Slop length shows the tasks

completed by the team.

4) Advantages of FDD:

- FDD is highly adoptive development model that greatly

stress on designing and modeling aspects of project [23].

- FDD teams specially focus on quality throughout the

development phases [3].

- One to four weeks iterations help to get quick feedback

about developed product.

5) Disadvantages of FDD: However there are some

disadvantages of FDD that limit its use.

- FDD does not provide any guidance about requirement

gathering, requirement analysis and risk management

therefore need some supporting methods [23].

- FDD needs team member who are highly skillful and

experts in designing and modeling field.

- FDD does not address the issues related to project

criticality [2], [23].

E. Dynamic System Development Model

 Dynamic System Development Method (DSDM) is an agile

project development framework that uses rapid application

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 6

development approach with great emphasis on quality [3]. It

provides complete assistance throughout the software

development life cycle. Like other agile models it also used

iterative and incremental approach to deliver quality software

with constant user involvement. It defines time and resources

and then adjusts the functionality to be developed [3], [24].

It was developed in United Kingdom in 1994 by

practitioners of a consortium, who were trying to improve

quality aspect of rapid application development processes

[25]. It was later developed as a complete framework of rapid

application development. Initially DSDM consortium was

only for the consortium organizations but in 2007 it was made

available openly as a free to use model.

1) DSDM Phases: DSDM is an iterative and incremental

development method which build important functionality first.

Its incremental nature helps in getting client feedback as

product evolves. DSDM combines the project management

and product development related activities in a single process.

DSDM life cycle consists of six phases: Pre-project phase,

Feasibility study, Business study, Functional model iteration,

Design and build iteration, Implementation and Post project

phase [2], [26] Fig. 3.

Fig. 3: DSDM Phases [3]

Pre-Project Phase: In this phase, project to be developed is

selected by considering DSDM suitability. Scope and

objective of the project is defined clearly which are used to

estimate the financial requirements. Important roles like

project manager and development team are also identified in

this phase. Feasibility study phase is also planned during pre-

project phase.

Feasibility Study: In this phase feasibility of the project is

judged. Project type, risk involved, technical staff availability

and organizational issues are considered to check the

feasibility. This phase may include a prototyping activity if the

business requirements or technology is not familiar. This

phase ends with feasibility report and a high level plan of

development.

Business Study: This phase is facilitated by workshops in

which experts from customer’s side sit together with

development team to find and prioritized the system

requirements. Business and technology characteristics are

identified to understand the business domain. High level

description of the processes, object model, system architecture

and outline plan of prototype is developed that can be refined

further in later stages.

Functional Model Iteration: This is an iterative phase in

which analysis; coding and prototyping activities are

performed iteratively. These prototypes are analyzed and its

results are used to improve the analysis model. Prototypes are

built to identify requirements however these are not discarded

completely and can be used in final solution. Aim of this

phase is to find out, what is to be developed, when it should

be developed and how it will be developed. Final outputs of

this phase include prioritized list of functional requirements,

prototyping review document, non-functional requirements list

and list of risk involved. These documents provide sound base

for the next iteration.

Design and Build Iteration: This is an iterative phase that

actually implements the requirements identified in previous

phase. System developed in this phase is tested and analyzed

by the user. User’s feedback is used to improve the developed

system iteratively. Final output of this phase is a tested

software that implement at least minimum set of requirements.

Implementation: In this phase, final software is handed

over to the users, necessary training is provided. User manuals

and other increment review documents are produced to guide

the user. Depending upon system complexity and size this

phase can be performed in iterations.

Post Project Phase: After the project is closed formally, a

review is conducted to check how good project has been

developed. Have the decided business benefits are achieved or

not? This phase may generate a benefit assessment document

for whole project or for individual release depending upon

project type.

2) DSDM Roles: There are fifteen different roles defined in

DSDM framework [25]. Some of the important roles in

DSDM are as follows:

Developer: These are development staff responsible of

carrying development activities under the supervision of

senior developer. Senior developer is selected on the bases of

experience and knowledge. Development team includes

analyst, designer, programmer and tester [3].

Technical Coordinator: Technical coordinator takes care of

business and technical aspects of project. He is responsible of

designing system architecture and maintaining technical

quality of the system.

Ambassador User: This person is from users, who

eventually use the developed system. He should have ability to

convey user’s needs to the development team and progress of

developed system back to the other users.

Advisor User: Ambassador user cannot represent whole

user community so an additional role is defined called advisor

user. He can contribute by giving specific project related

information.

Visionary: Visionary is a user having good understanding

of the business objectives. He assures that most important and

critical requirements are found and developed correctly in

system. He provides guidance to keep project in right

direction.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 7

Executive Sponsor: He is the person from customer’s

organization having responsibility of providing necessary

financial support for the project.

3) DSDM Principles: DSDM based on eight principles

[26]. These foundation principles of DSDM help in finding

best business solution. These principles are as follows:

- Focus on Business needs.

- Deliver on time.

- Collaborate and Cooperate with each other.

- Always focus on quality, never compromise on quality.

- Build solution incrementally.

- Develop solution in iterations.

- Communicate continuously to get feedback.

- Establish control through plans.

4) Advantages of DSDM:

- DSDM provide rapid application development with the

integration of agile principles [23].

- It is an adoptable framework that can incorporate best

practices from other approaches [2].

- It provide proper guidelines for different project aspects

like project management, risk control and development

techniques [23].

5) Disadvantages of DSDM:

- A large number of roles in DSDM can create

administration issues during development process [23]

- DSDM does not consider project criticality [2]

- Being a framework, DSDM does not provide specific

guidance about issues related to team size and iteration length

[2].

F. The Crystal Methods

 Crystal family is collection of agile software development

methodologies that can be used for different software projects

depending upon size, complexity, criticality and number of

people involved.

It was developed by Alistair Cockburn in early 1990 while

working at IBM. He interviewed different team working on

different projects to find best practices followed by teams. He

found that these teams did not following the formal

methodologies or not using specific technology for delivering

successful software. However they communicated frequently

to discuss about project. On the other hand, delayed or failed

project teams tried to follow formal methods with little team

collaboration [2]. This helped him to conclude that frequent

communication among team members can improve the

software success rate. According to Cockburn’s philosophy

“To the extent that you can replace the written documentation

with face to face interaction, you can reduce the reliance on

written ‘promissory’ notes and improve the likelihood of

delivering the system” [27]. Crystal methods focus on people

and communication among people rather than process to

frequently deliver a working software.

Crystal family includes a number of methods represented by

different colors arranged in ascending opacity. Cockburn

named it “Crystal Methods” after a gemstone with different

facets. Different method of crystal family represents different

facets of crystal family. Agile methods of this family are

crystal clear for small projects followed by crystal yellow for

medium, orange for large and red for very large projects.

Based on project attributes, like project size, complexity,

criticality, skill level, available technology or team size, best

suitable methodology can be selected for an individual project

Fig. 4. This methodology can be tailored according to

emerging needs of project.

Fig. 4: The family of Crystal Methods [3]

In Fig. 4 characters C, D, E and L shows potential loss due

to system failure, here C represents comfort, D represents

discretionary money, E represents essential money and L

represents life [3]. Project and project criticality is plotted

against X-axis and Y-axis respectively. D20 means a project

with team size 20 with criticality of discretionary money. Each

method mentioned in figure has its own set of practices, roles,

work-products and techniques however these methods follow

some common rules and value to deliver successful software

[22]. Crystal methods focus on people collaboration and

communication rather than process solely. It develops system

incrementally, and Time duration for each iteration should not

exceeds from four months. There are only two crystal methods

are defined and used that are crystal clear and crystal orange

[3].

1) Policy Standards: Crystal clear and crystal orange use

some policy standards that provide guidance throughout the

development process [3]. These are listed below:

- Incremental delivery of tested work product.

- Direct user participation.

- Automated regression testing.

- Project progress tracking by using milestones (working

software).

- Workshops after each delivery to adjust methodology

according to changes.

2) Crystal Clear: Crystal clear is designed for the small

projects having 6 team members (D6 projects). However it

can be used with E8 and D10 project after tuning

communication practices. Crystal clear needs project team to

be located at same place due communication structure [22].

Team members discuss about project requirements, design,

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 8

tools and priorities daily. It develop software incrementally

with each iteration ranges from two to three months. Team

sets standards for coding, regression testing and user interface.

Two reviews are conducted per release. Project progress is

measured by software deliverable or by completion of some

important decision.

Documents and Artifacts: Documents for crystal clear

method include release sequence, use cases, object model,

user manuals and test cases. Schedule is mentioned in user

viewings. For design documentation it uses screen drafts and

design sketches only [7], [22].

Roles: There is only one team working on the project in

crystal clear that includes following roles.

Sponsor, business expert, senior designer, senior

programmer, documenter and unit tester [3], [22].

3) Crystal Orange: This is used for medium sized project

with team size of 20 to 40 members (D40 projects). More than

one teams work on these project which lasts from one to two

years [3]. However this method does not work in distributed

environment. This method focus on time to market aspect of

the project and deliver product incrementally. Each increment

can lasts from three to four months. Teams efficiently

communicate with each other and response to changing

requirements. This limit the number of deliverable but reduce

the cost of maintaining also. Two reviews are conducted for a

release. At the end of each iteration a retrospective meeting is

conducted to tune the methodology.

Documents and Artifacts: In contrast to crystal clear, this

method uses requirement document and detailed project

schedule. It uses release plan, object models, user interface

design, test cases, user manuals and working code [7], [22].

Roles: In crystal orange, more than one teams work on

project according to project size. Due to large project size and

complexity it includes many other roles to the roles used in

crystal clear. These roles are as follows: user interface

designer, technical facilitator, database designer, business

analyst, usage analyst, tester and writer [3].

4) Advantages of Crystal Methods:

- Effective team communication is key feature of successful

projects. Crystal methods provide proper guidance about team

communication of varying team sizes [23].

- Different crystal methods can be used for different project

sizes and criticality [2], [3].

- Crystal method provides good risk control and technical

practices [23].

5) Disadvantages of Crystal Methods:

- Only two method (crystal clear and crystal orange) are

defined out of four [3], [23].

- These methods lack design and code verification activities

[3].

- Crystal methods do not provide any guidance about

business enterprise [23].

- Crystal methods lack system validation practices which

make them inappropriate for the development of life

critical systems [3].

- There is no well-defined team structure in crystal methods

[3].

IV. DISCUSSION

A large number of agile software development

methodologies have proved the acceptance of agile

development in software industry. Different agile models like

TDD, FDD, DSDM, Crystal methods etc. have their own

strengths and weaknesses which make then suitable for

different project type, team size and development

environment. Rapid response to changing requirements, quick

feedback, early software delivery, cost reduction and good

time management are some of advantages of agile software

development models that make them suitable for the present

software projects. However agile development models are not

exempt from the drawbacks completely. Lack of

management/staff control, lesser focus on design and

documentation, scalability issues, product ownership, product

quality and maintenance are some major problems with agile

models [28]. Agile software development models cannot be

used for all software projects especially for large, complex

and safety critical projects [8], [28].

To overcome the limitations of both traditional and agile

development models, software practitioners integrated

different models from both sides to enhance their advantages

and suppress their shortcomings. Some also tried to enhance

the agile models to overcome the limitations. Some of such

studies are stated here. In [29] authors proposed Enhanced

Extreme Programming (EXP) which tried to cover some

deficiencies of XP. A hybrid model called XSR is suggested

in [30]. This is a generalized framework that integrates XP,

Scrum and RUP. A new process model called eXRUP is

proposed in [31] that integrate XP with RUP.

Following Table I present a brief overview of agile software

development models discussed in section III [2], [3], [22],

[32].

V. CONCLUSION

Agile software development models are widely accepted

and acknowledged by software developers now. These models

have ability to meet the requirements of today’s fast pace

software development projects. This paper discusses Test

Driven Development, Feature Driven Development, Dynamic

System Development Model and Crystal Methods in detail.

This study will be greatly helpful for researchers, developers

and academicians as each model is discussed in detail with

complete development life cycle, major roles, artifacts,

advantages and disadvantages. Provided information can be

used to choose a suitable model for some specific project.

This can also provide a solid base to start a new research.

However it is needed to provide empirical proof by applying

these models in industry that help in finding more hidden

aspects still not revealed to software industry.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 9

TABLE I: AGILE SOFTWARE DEVELOPMENT MODELS

Sr.

No.
Model Team size Iteration length

Project

Size
Key Features

1 TDD 1- 3 or can be

added

accordingly

Variable based

on project type

Small • Tests are written first before development

• Code is refactored to pass the tests

• Incremental approach

2 FDD 4-20

1-4 weeks Large • Scalable to larger teams

• Highly-specified development practices

• Five sub-processes, each defined with entry and

exit criteria

• Development are architectural, object models and

sequence

diagrams (UML models used throughout)

3 DSDM 2-6

Variable based

on project type

Large • Uses rapid application approach

• Continuous emphasis on quality

• Multiple teams can work on same project

4 Crystal

Method

Variable

Based on

project type

Variable based

on project type

All • Family of methods

• Represented by colors

• Different method can be used for different types of

projects

REFERENCES

[1] M. Fowler and J. Highsmith, “The agile manifesto.” Software

Development, vol. 9, no. 8, pp. 28-35, 2001.

[2] D. Cohen, M. Lindvall, and P. Costa, “An introduction to agile

methods.” ADVANCES IN COMPUTERS, vol. 62, 62, pp.1-

66, 2004.

[3] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile

software development methods: Review and analysis.” 2002.

[4] T. Dingsøyr, S. Nerur, V. Balijepally, and N.B. Moe, “A

decade of agile methodologies: Towards explaining agile

software development.” Journal of Systems and Software, vol.

85, no. 6, pp. 1213-1221, 2012.

[5] A. Tarhan, and S. G. Yilmaz, “Systematic analyses and

comparison of development performance and product quality

of Incremental Process and Agile Process.” Information and

Software Technology, vol. 56, no. 5, pp. 477-494, 2014.

[6] G. S. Matharu, A. Mishra, H. Singh, and P. Upadhyay,

“Empirical study of agile software development

methodologies: A comparative analysis.” ACM SIGSOFT

Software Engineering Notes, vol. 40, no. 1, pp. 1-6, 2015.

[7] M. V. Bharathi and V. Spurthi, “A Survey on Efficient Agile

Development Methods.” In International Journal of

Engineering Research and Technology, vol. 2, no. 9, 2013.

[8] K. N. Rao, G. K. Naidu and P. Chakka, “A study of the Agile

software development methods, applicability and implications

in industry.” International Journal of Software Engineering and

its applications, vol. 5, no. 2, pp. 35-45, 2011.

[9] T. Dyba, and T. Dingsoyr, "Empirical studies of agile software

development: A systematic review.", Information and Software

 Technology, vol. 50, no. 9-10, pp. 833-859, 2008.

[10] L. Madeyski and M. Kawalerowicz, “Continuous Test-Driven

Development-A Novel Agile Software Development Practice

and Supporting Tool.” In ENASE, pp. 260-267, 2013.

[11] D. S. Janzen and H. Saiedian, “Test-driven development:

Concepts, taxonomy, and future direction.” Computer, vol. 38,

no. 9, pp. 43-50, 2005.

[12] S. Hammond and D. Umphress, “Test driven development: the

state of the practice.” In Proceedings of the 50th Annual

Southeast Regional Conference, ACM 2012, pp. 158-163.

[13] K. Beck, “Extreme programming explained: embrace change.”

addison-wesley professional, 2000.

[14] K. Beck, “Test-driven development: by example.” Addison-

Wesley Professional, 2003.

[15] H. Erdogmus, G. Melnik, and R. Jeffries, “Test-Driven

Development.” 2010.

[16] D. Janzen and H. Saiedian, “Does test-driven development

really improve software design quality?” IEEE Software, vol.

25no. 2, pp. 77-84, 2008.

[17] L. Williams, E. M. Maximilien and M. Vouk, “Test-driven

development as a defect-reduction practice.” In Software

Reliability Engineering, 2003. ISSRE 2003. 14th International

Symposium on, pp. 34-45.

[18] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep and H.

Erdogmus, “What do we know about test-driven

development?” IEEE software, vol. 27, no. 6, pp. 16-19, 2010.

[19] H. Erdogmus, “On the effectiveness of test-first approach to

programming”, 2005.

[20] T. Karamat and A. N. Jamil, “Reducing test cost and improving

documentation in TDD (Test Driven Development).” In

Seventh ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD'06), pp. 73-76.

[21] S. Goyal, “Agile techniques for project management and

software engineering.” In Major Seminar on Feature Driven

Development, August 2007.

[22] B. Boehm, “A survey of agile development methodologies.”

Laurie Williams, 2007.

[23] E. Mnkandla and B. Dwolatzky, “Agile Software Methods:

State-of-the-Art.” Agile Software Development Quality

Assurance, 1, 2007.

[24] A. Kaushik, DSDM and ASD Agile Methodologies.

[25] J. Stapleton, “Dynamic systems development method.” 1997.

[26] www.dsdm.org

[27] J. A. Highsmith, “Agile software development ecosystems.”

Vol. 13, Addison-Wesley Professional, 2002.

[28] D. Turk, R. France and B. Rumpe, “Limitations of agile

software processes.” arXiv preprint arXiv:1409 .6600, 2014..

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 2, MARCH 2017

[ISSN: 2045-7057] www.ijmse.org 10

[29] M. R. J. Qureshi and J. S. Ikram, “Proposal of Enhanced

Extreme Programming Model.” International Journal of

Information Engineering and Electronic Business, vol. 7, no.1,

p.37, 2015.

[30] G. Ahmad, T. R. Soomro and M. N Brohi, “XSR: Novel

Hybrid Software Development Model (Integrating XP, Scrum

& RUP).” International Journal of Soft Computing and

Engineering (IJSCE), vol. 2, no. 3, 2014.

[31] G. Rasool, S. Aftab, S. Hussain and D. Streitferdt, “eXRUP: A

Hybrid Software Development Model for Small to Medium

Scale Projects.” Journal of Software Engineering and

Applications, vol. 6, no. 9, p. 446, 2013.

[32] R.V. Anand and M. Dinakaran, “Popular Agile Methods in

Software Development: Review and Analysis.” International

Journal of Applied Engineering Research, vol. 11, no. 5, pp.

3433-3437, 2016.

