
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 9

A Loss-less Image Compression Technique Using

Divide and Conquer Strategy

Khalid Imtiaz

Computer Science & Engineering Department, University of Engineering and Technology, Lahore, Pakistan

engr.khalidimtiaz@gmail.com

Abstract– Data or image compression is the method of reducing

the size of data. In a compressed data set a fewer bits are used to

represent the same data element as in the uncompressed data set.

Huffman Coding uses the probability of occurrence of a data

value in the data set and assigns a specific code to this

probability, replacing the original value with this special code.

This paper makes use of this technique by dividing the data set

into two parts and then applying Huffman coding on each

divided part separately. It is found that the compression rate is

increased if the data part is divided before applying Huffman

coding.

Keywords– Huffman Coding, Image Compression, Matrix and

Image

I. INTRODUCTION

edia such as videos, images, sound recordings etc are

nowadays expanding exponentially in size, quality and

length [1]. When this huge amount of data is needed to

be transmitted over a network the problem arises because a

huge bandwidth is required to send this data and due to slow

progress in networking innovation, it becomes very hard to

transmit the data over the network of present day. A solution

is presented to compress the data before transmitting it over

the network. The data in compressed form might not even be

in a readable form but since the size is reduced it is

acceptable. The data, compressed into a format which might

not be readable, is sent over the network in this reduced size

and then on the destination it is decompressed and is

converted back into a readable form. This paper uses an image

as its data source which will be compressed using Huffman

encoding technique.

An image is a sampled array of continuous data stored in a

PC in digital form. A digital image is two or three

dimensional array of variating values. A monotone image can

be a 2-D array of values with each of the value containing 8

bits. It means that each pixel in the image can have a value

ranging between 0 and 255. If there is a 1024 x 1024 x 8 bit

image, it takes 8192Kb or 8Mb. Since storage devices are

relatively cheaper now so storing a single or few 8Mb pictures

is affordable. But the problem arises when this 8Mb picture is

required to be transferred over the internet. It takes a lot of

bandwidth for an image. Even for the storage purposes, if it is

required to store thousands of images of an even larger

resolution, it gets very costly to store in the images if they

remain in this pattern. Here arises a need for image

compression. Several algorithms are being used for image

compression but each one has its own give and take.

Huffman coding is used to form a minimum redundancy

code which eliminates the redundant values from any data set

and replace them with the probability of occurrence of a

particular value in the data set. Huffman coding is being used

for file, image and sound compression i.e. JPEG and PNG

image format, GZIP and BZIP file compressing algorithms

and MP3 and MPEG etc [2].

The main steps in the process of image compressing are

shown in Fig. 1. An image is provided as input which is

compressed using any algorithm that reduces the picture size.

This image in the compressed form may not be in a readable

state unless it is decompressed (or decoded) which is a similar

but reverse process of the compressing algorithm.

 Fig. 1. Compression & Decompression

M

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 10

In this paper, we take a look at the basic structure and

representation of an image, how an image is compressed

using Huffman Coding, what amount of compression can be

achieved using the classical Huffman coding technique, what

amount of compression is achieved by dividing the data set

before applying Huffman coding and the comparison of

compression rates of two techniques. The next section focuses

on the work that has already been implemented. The proposed

solution sections focuses on the new technique prescribed for

image compression. Then in the next section, the results are

compared with the classical image compression techniques

and then the paper is concluded.

II. RELATED WORK

Huffman coding is an encoding technique which makes use

of variable length codes to represent the source data. The

source data values are mapped into variable length binary

values which are derived using a probability table that is the

core part of Huffman coding [3].

This technique will be applied on a picture to elaborate

further. A picture is an array of pixels. Each pixel in an image

is actually a value of a certain color. In a grayscale image (any

image that is converted into a range of gray and white color

only) each pixel value represents a shade of gray. For an 8-bit

image the shades of gray will range between 0 and 255 where

0 may represent the darkest shade of gray and 255 may

represent the lightest shade of gray (or white) or vice versa.

Since a digital image is a mere representation of analog data

converted into the form of 0’s and 1’s for the purpose of

storing/representing it into a PC, a lot of detail is lost. An

analog set of data passes through the steps of sampling and

quantization when it is desired to be converted into a digital

image. As analog data is continuous, it cannot be stored in a

PC in its analog form because a PC only deals with digital (or

discrete) data. So, the analog data is sampled at short intervals

and this sample is then given different values in a given range

(as for the case of an 8-bit image, the sampled data will be

given the values between the range 0 and 255). The larger the

sampling ratio, the more detailed representation of the analog

data it achieves. So, a grayscale image of size 256 x 256

pixels and in it, each pixel represented by 8-bits will have a

minimum pixel value of 0 and the largest pixel value of 255.

This structure of image is very important in image

compression.

Delphi image control tool is also used to convert an image

into array. Image control can be used to display a graphical

image - Bitmap (BMP), Icon (ICO), GIF, Metafile (WMF),

JPEG, etc. An Algorithm that is generated in Delphi using

Huffman coding converts the image into binary codes and

then removes the redundant codes from the gray scale image,

compresses the BMP image (especially gray scale image) and

then reconstructs the image using binary tree [4].

Reducing the image file size by decreasing the number of

bits per pixel required to represent it also reduces the

transmission time and bandwidth required for the compressed

image to transmit it over network. After all the image is

reconstructed by decoding the Huffman codes. All the

compression is done by removing the redundant bits from

every pixel of image and reconstructing the image in original

form using Huffman coding [2].

A picture contains redundant information due to

neighboring pixels which are linked together and contain

similar information. Image compression means removing

redundant information from image pixels by keeping image

resolution as fine as possible. Image compression is done by

both Huffman coding and also through arithmetic coding.

Huffman image compression shows better results even when

the size of image is large, it compresses the image in a way

that result is more close to real image [5].

To compress an image and get more efficient results we use

Lempel ZivWelch algorithm after using Huffman coding. In

first stage we use Huffman coding algorithm to compress the

image that gives a Huffman tree and Huffman codes. After

that all the Huffman codes are concatenated and another

compression technique that is Lempel ZivWelch coding is

applied to compress it even further. In the last stage Retinex

algorithm is applied on compressed image to enhance the

image quality and colors of image. So this compressed image

is very similar to the uncompressed image that takes more

space for specifying the features of each pixel [6].

Bitmap and tiff images use 32 bits to encode the color at

each pixel hence they require a lot of information to store the

image. On the other hand, JPEG images have three levels of

compression, chunks of discrete information are patterns of

2D arcs. Secondly the information that human eye cannot

resolve is taken out from image and after that Huffman coding

is applied on image for further compression [7].

Image or videos require very large storage space when

these are in raw form. A hybrid technique that uses discrete

cosine transform for compaction along with discrete wavelet

transform for multi-resolution images uses Huffman coding

algorithm for the purpose of image compression. In this

approach similarly, bit patterns are encoded using Huffman

coding scheme and compression is achieved [8].

Two types of compressions categories are being used today

for the purpose of image compression. The first is the lossy

compression method in which some information is lost in the

image when it passes through the process of image

compression. Actually, the loss of information is the key

factor in achieving compression in this type of image

compression techniques. However, the image is still

informative although some loss has been experienced by it.

The other technique is the lossless technique in which no

information is lost during the compression process and the

image presents all the information as it was in the

uncompressed image [9].

Different data redundancy schemes are present in the

images. Inter-pixel redundancy is related with different pixels

of the image having the same data value. This redundant

information can be removed using some technique to achieve

image compression. Data-redundancy scheme is used when

image has coding redundancy. And psycho-visual redundancy

scheme deals with the identification of such data values that

are invisible to human eye [10]. These redundant values can

be removed from an image for the purpose of achieving image

compression.

Along with the compression of data, security of information

while compression is also an important and integral part of

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 11

image processing. Algorithms are devised for achieving both

data compression and data security [11].

III. PROPOSED SOLUTION

An image is a matrix of pixels; we can represent it as

follows:

2 6 3

5 4 3

1 2 3

Binary representation of this matrix (image) will be as

follows:

00000010 00000110 00000011

00000101 00000100 00000011

00000001 00000010 00000011

Since each pixel is represented by 8 bits, it will take the size

of 72bits or 9 bytes. This size is too large for a 3x3 resolution,

8-bit, grayscale image. If the same technique is used for a

colored image it will take 27 bytes to store a 3x3 resolution

image since a colored image uses three 3x3 matrices and each

3x3 matrix represents a Red, Green or Blue frame (RGB)

which are combined as one on top of the other to make a

colored image. This storage technique is very costly so this

image needs to be compressed. Huffman coding will be used

for the compression of this image.

Huffman coding assigns a probability value to each of the

redundant or non-redundant values in a data set and lists down

the values on base of their probabilities [12]. A very

redundant value will have a higher probability and a non-

redundant value will have a very low probability.

Probabilities are listed against each redundant value where the

highest probability value will come 1st and the probability

will decrease down the list. After listing down the probability

list, starting from the lowermost probability values, two

values are added and a new list is created where the least two

probability values in the previous list are replaced with the

sum of those two least values and the list is re-ordered. The

same step is repeated for all the lower values until we arrive

on the list having only two values. All the values in all the list

are then assigned a unique binary value and the image then

uses these probabilities in binary values to represent the data

values. This technique allows for storing a larger data value in

a shorter binary code based on its probability of occurrence.

Assignments of binary values to each probability value in the

lists are done using a binary tree structure. A zero is allocated

to each left node and a 1 to each right node starting from the

root node to all the branches. This way a unique code is

generated for each node reading from the root node to the

desired node. For the above described data matrix, encoding

technique is shown in Fig. 2.

Fig. 2. Huffman Coding

Now if we represent the same matrix using the new codes

based upon the probability, it will look like the following:

10 010 11

011 000 11

001 10 11

We can calculate the size this new matrix will take as

follows:

Size= Probability * (number of bits) = (0.34) (2) +(0.22) (2)

+(0.11) (3) + (0.11) (3) + (0.11) (3) + (0.11) (3)

 =2.44 bits/symbol

So for 9 elements as in the above array we will need 2.44 *

9 =21.96 bits, or 2.745 bytes

In this paper a different approach to image compression is

presented. A grayscale image is an array of different numbers

and each number represents a specific gray level. Huffman

coding is applied on these numbers to obtain image

compression. This paper introduces a new approach in a

divide and conquers way. An image is divided into two parts

and Huffman coding is applied on each part separately. Since

the size of the image is now half of the original image, the

number of Huffman coding probabilities will now decrease.

Due to this decrease in the probability values, a fewer binary

codes are required to represent each probability value as

compared to the original image. This paper focuses on only

the compression of the image which is required to be

transmitted. The decompression and conversion of the image

is not in the scope of this paper. This technique is applied on

the above array as follows. First the array is divided into two

parts, since it is a 3 x 3 array, the sizes cannot be same, so it is

divided as:

A = 2 6 3

B = 5 4 3

 1 2 3

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 12

The probability lists for matrices A and B are shown in

Fig. 3 and Fig. 4, respectively.

Fig. 3. Probability List for Matrix A

Fig. 4. Probability List for Matrix B

According to these probability lists, the above two matrices

after applying Huffman coding become

A= 0 11 10

B= 101 100 11

 00 01 11

So for 9 elements as in the above array we will need 19 bits,

or 2.375 bytes.

For storing the same matrix, this split approach requires 19

bits, whereas Huffman coding requires 22 bits. It is clear that

this approach provides better results than the classical

Huffman coding technique. The different stages of this

compression method are shown in Fig. 5.

Fig. 5. Flow of Split Algorithm

This algorithm is implemented in Matlab. First a grayscale

image is imported and it is converted into a matrix. This

image is then split into two equal parts. Huffman dictionaries

for these two images are created separately and then Huffman

Coding is applied on each part. The resultant images are

converted into binary and their binary lengths are measured.

The algorithm for this method is as follows:

 Read an image and convert it into matrix

 Divide the matrix into two parts

 Apply Huffman Coding on 1
st
 part

 Apply Huffman Coding on 2
nd

 part

 Convert the two (halved) matrices into binary

 Compare the length as follows

 Binary Length of 1
st
 compressed part + Binary

length of 2
nd

 compressed part < Binary length of

the whole image compressed

Let the whole compressed image be represented by the

letter z, the first divided and compressed part of the image be

represented by x and the second compressed part be

represented by y, then the result can be represented through

the following formula:

Z > X + Y

This formula shows that the divided and compressed

images have a smaller binary length as compared to the

original image compressed using Huffman coding.

IV. RESULTS AND COMPARISONS

The input image is cameraman.tif as shown in Fig. 6. It is

split into two parts as “a1” as shown in Fig. 7 and “a2” as

shown in Fig. 8.

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 13

 Fig. 6. Cameraman.tif Fig. 7. Cameraman1.tif Fig. 8. Cameraman2.tif

Image
Original Binary Length

(Bits)

Length after applying

Huffman coding (Bits)

Cameraman.tif 524288 461690

Cameraman1.tif 262144 217810

Cameraman2.tif 262144 230686

Fig. 9. Results

S.

No.
Image Name Full Image (Bits) Part1 Length (Bits)

Part2 Length

(Bits)

Combined length

(Bits)

Difference

(Bits)

1 testpat 166114 83087 82801 165888 226

2 cameraman 461690 217810 230686 448496 13194

3 coins 416323 214676 193962 408638 7685

4 circuit 472400 224976 235436 460412 11988

5 cell 298320 158831 138213 297044 1276

6 eight 343408 149962 175270 325232 18176

7 glass 485050 231372 240548 471920 13130

8 mandi 464861 230684 227193 457877 6984

9 moon 357895 182490 164017 346507 11388

10 rice 461821 231258 229743 461001 820

11 pout 407449 202734 197579 400313 7136

12 tire 456412 230584 224682 455266 1146

13 westconcordorthophoto.png 507551 252622 253588 506210 1341

14 concordaerial 462606 229478 226769 456247 6359

15 fabric 479097 239021 238760 477781 1316

16 football.jpg 441259 221400 218016 439416 1843

17 gantrycrane.png 437636 218349 207607 425956 11680

18 greens.jpg 486336 246370 238349 484719 1617

19 hestain.png 477829 239940 235502 475442 2387

20 peppers.png 459912 229212 228505 457717 2195

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 14

Fig. 10. Image Size in Binary for Full and Divided Images

Fig. 11. Image size for Full and Binary Images

Huffman Coding is then applied to Cameraman.tif and then

on a1.tif and a2.tif separately. The resultant compressed

images are then converted into binary and their binary lengths

are compared. Results are summarized in Fig. 9.

It is evident from the above table that if Huffman coding is

applied on the original image 11.94\% of compression is

achieved. If the split method is used 14.46\% compression is

achieved.

Using the same method, 20 different images are used and

the results are summarized in Fig. 10. The images have been

taken from the built-in Matlab library.

The above table is represented in the graphical form as

shown in Fig. 11.

The graph shows that for a number of sample pictures, the

proposed scheme of image compression has a significant drop

in the image size as compared to the image compressed using

classical Huffman Coding technique.

V. CONCLUSIONS AND FUTURE WORK

This paper concludes that if an image is split into two parts

before applying Huffman coding algorithm, the compression

ratio is increased. The two compressed parts take lesser space

as compared to the whole image compressed. This technique

can be used for storing or for transmission purposes. It is

found that if an image is divided into two parts and then

compressed, it gives out a better compression ratio as

compared to the Huffman coding being applied upon the

whole image. In future, the split method will be applied on the

images by splitting them into more than one part to see if the

compression rate further increases.

REFERENCES

[1]. Shahbahrami, A., Bahrampour, R., Rostami, M. S., Mobarhan,

M. A, “Evaluation of Huffman and Arithmetic Algorithms for

Multimedia Compression Standards”, Journal of Theoretical

and Applied Information Technology, April 24, 2016.

[2]. Pujar, J. H., Kadlaskar, L. M, “A New Lossless Method of

Image Compression and Decompression Using Huffman

Coding Techniques”, Journal of Theoretical and Applied

Information Technology, April 23, 2016.

[3]. Mathur, M. K., S. L., & Saxena, D. D. (2012). Lossless

Huffman Coding Technique for Image Compression and

Reconstruction Using Binary Trees”, Int. J. Comp. Tech.

Appl., 3(1), 76-79, May 12, 2016.

[4]. A. S., “Lossless Image Compression and Decompression

Using Huffman Coding”, International Research Journal of

Engineering and Technology (IRJET), 02(1), 240-247, April

2015.

[5]. D. K., and K. K., “Huffman Based LZW Lossless Image

Compression Using Retinex Algorithm”, International Journal

of Advanced Research in Computer and Communication

Engineering, 02 (8), August 2013.

[6]. Sayood, K., “Introduction to Data Compression”, Morgan

Kaufmann, 2006.

[7]. Bharath, K. N., & G. P., “Hybrid Compression Using DWT-

DCT and Huffman Encoding Techniques for Biomedical

Image and Video Applications”, International Journal of

Computer Science and Mobile Computing, 2(5), 255-261, May

2013..

[8]. R. A., & Kamal, I. W., “A New Lossless Image Compression

Technique Based on Bose, Chandhuri and Hocquengham

(BCH) Codes”, International Journal of Software Engineering

and Its Applications, 5(3), 15-22, July 2011.

150000

200000

250000

300000

350000

400000

450000

500000

550000

Chart Title

Full Image Divided

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 8, NO. 7, DECEMBER 2017

[ISSN: 2045-7057] www.ijmse.org 15

[9]. B. D., & V. A., “Image Compression Using DCT and

DWT”, International Journal of Innovative Research in

Computer and Communication Engineering, 3(6), June 2015.

[10]. Ashok, D. M., & Yaragunti, D. S., “Image Masking and

Compression using Bit shifting”, Global Journal of Computers

& Technology, 2(1), 2394-501x, 66-74, June, 2015.

[11]. Sharma, M., “Compression Using Huffman Coding. IJCSNS

International Journal of Computer Science and Network

Security, 10(5), 133-141, 2010.

