A Study on the Joint Maximal Numerical Range of Aluthge Transform

O. S. Cyprian

Department of Mathematics. Kabarak University P.O. Box Private Bag - 20157 Kabarak, Kenya cypriansakwa@gmail.com

ABSTRACT—The Aluthge transform \widetilde{T} of a bounded linear operator T on a complex Hilbert space X is the operator $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. Here, T = U|T| is any polar decomposition of T with U a partial isometry and $|T| = (T^*T)^{\frac{1}{2}}$. This study of the Aluthge transform T was introduced and studied by Aluthge in his study of *p*-hyponormal operators. Since its conception, this notion has received much attention for a single operator T. In order to understand the joint behaviour of Aluthge transform of several operarors $T_1, ..., T_m$, researchers such as Cyprian have studied the Aluthge transform of an m-tuple operator T = $(T_1, ..., T_m)$. For instance, the properties of the joint essential numerical range of Aluthge transform for an m-tuple operator $T = (T_1, ..., T_m)$ were studied by Cyprian. However, nothing is known about the joint maximal numerical range of Aluthge transform \widetilde{T} of an *m*-tuple operator $T = (T_1, ..., T_m)$. This paper focuses on the study of the properties of the joint maximal numerical range of Aluthge transform for an m-tuple operator $T = (T_1, ..., T_m)$. This study will help in the development of the research on hyponormal operators and semi-hyponormal operators.

Index Terms—Aluthge transform \tilde{T} , Hilbert space, Joint Maximal numerical range \tilde{T} , Maximal Numerical range of \tilde{T} .

1 INTRODUCTION

The joint maximal numerical range of Aluthge transform $\operatorname{Max} W_m(\widetilde{T})$ of several operators $T = (T_1, ..., T_m)$ is defined as the set of all complex numbers r_k for which there exist a sequence $\{x_n\}$ of unit vectors in X such that $\langle \widetilde{T}_k x_n, x_n \rangle \to r_k$ and $\|\widetilde{T}_k x_n\| \to \|\widetilde{T}_k\|$ for $0 \le k \le m$.

In the case k = 1, it becomes the maximal numerical range of Aluthge transform \widetilde{T} , $MaxW(\widetilde{T})$, of a single operator T.

This paper establishes some of the properties of the set $\operatorname{Max} W_m(\widetilde{T})$. This study is an extension of the study of the joint numerical range of Aluthge transform $W_m(\widetilde{T})$ studied by Cyprian, Aywa and Chikamai [3] among other researchers. Throughout this paper, B(X) denotes the algebra of all bounded linear operators acting on a complex Hilbert space X. Recall that the Aluthge transform \widetilde{T} of T is the operator $T = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. See Aluthge[1] for this and more. Note here that T = U|T| is any polar decomposition of T with U a partial isometry and $|T| = (T^*T)^{\frac{1}{2}}$. Here, a linear operator $T^* \in B(X)$ denotes the adjoint of an operator $T \in B(X)$ and is defined by the relation $\langle Tx, y \rangle = \langle x, T^*y \rangle \quad \forall y, x \in X$.

The following section is brief survey of the theory of the maximal numerical range of Aluthge transform.

2 MAXIMAL NUMERICAL RANGE OF ALUTHGE TRANSFORM

Stampfli [5] introduced and studied the concept of maximal numerical range of a bounded operator T on B(X) and used it to derive an identity for the norm of a derivation. Recall here that a derivation on a Hilbert space X is a linear transformation $\delta: X \to X$ that satisfies $\delta(xy) = x\delta(y) + \delta(x)y \forall x, y \in X$. A derivation δ is said to be an inner derivation if for a fixed xwe have $\delta: y \to xy - yx$. For an operator $T \in B(X)$, the inner derivation is denoted and defined as $\delta_T(Y) = TY - YT$ where $Y \in B(X)$. Stampfli [5] determined the norm of an inner derivation and showed that $\|\delta_T\| = 2 \inf\{\|T - \lambda\| : \lambda \in \mathbb{C}\}$.

The maximal numerical range of an operator T is denoted by MaxW(T) and defined as

 $\begin{aligned} \operatorname{Max} W(T) &= \{ r \in \mathbb{C} : \langle Tx_n, x_n \rangle \to r, \text{ where } x_n \in X; \\ \|x_n\| &= 1 \text{ and } \|Tx_n\| \to \|T\| \}. \text{ Here, the operator norm } \|T\| \\ \text{ is defined as } \|T\| &= \sup \{ \|Tx\| : \|x\| = 1 \}. \text{ Stampfli [5]} \\ \text{ proved that } \|\delta_T\| &= 2\|T\| \text{ if and only if } 0 \in \operatorname{Max} W(T). \end{aligned}$

Several other properties of the set MaxW(T) are known. For instance, it is clear from the following theorem that the set MaxW(T) is nonempty, closed and convex.

Theorem 1. The set MaxW(T) is nonempty, closed and convex subset of $\overline{W(T)}$.

See Stampli [5] for the proof.

Unlike the numerical range W(T), the maximal numerical range, MaxW(T) does not satisfy the power inequality. That is,

 $|MaxW(T^n)| \leq |MaxW(T)|^n$ for n = 1, 2, ... Also, unlike the set W(T), the set MaxW(T) is unstable under translation. See Stampfli [5]

In 2007, Guoxing, Liu and Li [4] studied the essential numerical range and maximal numerical range of the Aluthge transform and proved several interesting results on maximal numerical range of Aluthge transform $MaxW(\tilde{T})$. Among other results, Guoxing, Liu and Li obtained relationships

between MaxW(T) and $MaxW(\widetilde{T})$ as shown in the following theorem.

Theorem 2. Suppose
$$T \in B(X)$$
.
1) $MaxW(T) \subset W(\widetilde{T})$.
2) $If ||T|| = ||\widetilde{T}||$, then $MaxW(\widetilde{T}) \subset MaxW(T)$

See Guoxing, Liu and Li [4] for the proof.

Guoxing, Liu and Li also proved the following theorem.

Theorem 3.
$$MaxW(\tilde{T} - \alpha) = MaxW(\tilde{T}^{(*)} - \alpha)$$
 for all $\alpha \in \mathbb{C}$ and $T \in B(X)$.

See Guoxing, Liu and Li [4] for the proof.

3 JOINT MAXIMAL NUMERICAL RANGE OF ALUTHGE TRANSFORM

The properties of the joint essential numerical range of Aluthge transform for an *m*-tuple operator $T = (T_1, ..., T_m)$ were studied by Cyprian in [2]. This was as a result of the need to understand the joint behaviour of Aluthge transform of several operators $T_1, ..., T_m$. This section, being and extension of this research of Aluthge transform, establishes some of the properties of the set $MaxW_m(T)$. We begin with the following theorem.

Theorem 4. Let $T = (T_1, ..., T_m) \in B(X)$ and $\widetilde{T} = |T|^{\frac{1}{2}} \cup |T|^{\frac{1}{2}}$. $MaxW_m(T) \subset W_m(\widetilde{T})$.

Proof. Assume that ||T|| = 1 and let

 $r = (r_1, ..., r_m) \in Max W_m(T)$. There exists a sequence $\{x_n\} \in X$ of unit vectors such that

$$\lim_{n \to \infty} \|Tx_n\| = 1 \text{ and } \lim_{n \to \infty} \langle Tx_n, x_n \rangle = r$$

for $T = (T_1, ..., T_m) \in B(X)$. This implies that

$$\lim_{n \to \infty} \||T|^{1/2} x_n\| = 1 \text{ and } \lim_{n \to \infty} \|(1 - |T|) x_n\| = 0.$$

Therefore,

$$\lim_{n \to \infty} |\langle Tx_n, x_n \rangle - \langle \widetilde{T} | T |^{1/2} x_n, |T|^{1/2} x_n \rangle|$$

$$= \lim_{n \to \infty} |\langle Tx_n, x_n \rangle - \langle U | T | x_n, |T| x_n \rangle|$$

$$= \lim_{n \to \infty} |\langle Tx_n, (1 - |T|) x_n \rangle|$$

$$\leq \lim_{n \to \infty} ||Tx_n|| ||(1 - |T|) x_n|| = 0.$$

Thus.

 $\lim_{n \to \infty} \langle \widetilde{T} |T|^{1/2} x_n, |T|^{1/2} x_n \rangle | = r.$

Letting $z_n = |T|^{1/2} x_n / ||T|^{1/2} x_n||$ then $\{z_n\}$ is a sequence of unit vectors and

$$\lim_{n \to \infty} \langle Tz_n, z_n \rangle =$$

Thus $r = (r_1, ..., r_m) \in \overline{W_m(\widetilde{T})}.$

Theorem 5. Let $T = (T_1, ..., T_m) \in B(X)$ and $T = |T|^{\frac{1}{2}} \cup |T|^{\frac{1}{2}}$. If $0 \in MaxW_m(T)$ then $\|\widetilde{T}\|^2 + |r|^2 < \|\widetilde{T} + r\|^2$ for any $r = (r_1, ..., r_m) \in \mathbb{C}^m$.

Proof. Let $0 \in MaxW_{\underline{m}}(\widetilde{T})$. Then there exists a sequence $\{x_n\} \in X$ such that $\langle T_k x_n, x_n \rangle \rightarrow 0$, $||x_n|| = 1$ and $\|T_k x_n\| \to \|T_k\|$ for $0 \le k \le m$. Note that

$$\|\widetilde{T}_{k}\|^{2} + |r_{k}|^{2} = \lim_{n \to \infty} \|(\widetilde{T}_{k} + r_{k})x_{n}\|^{2}$$
$$\leq \|\widetilde{T}_{k} + r_{k}\|^{2}, \ 0 \leq k \leq m$$

Now,

$$\sum_{k=1}^{n} \|\widetilde{T}_{k}\|^{2} + \sum_{k=1}^{n} |r_{k}|^{2} \le \sum_{k=1}^{n} \|\widetilde{T}_{k} + r_{k}\|^{2}$$

Thus $\|\widetilde{T}_k\|^2 + |r_k|^2 \le \|\widetilde{T}_k + r_k\|^2$ for any $r = (r_1, ..., r_m) \in$ \mathbb{C}^m .

We now show the relation between the essential norm $||T_k||_e$ and $||T_k||$.

Proposition 1. If $\|\widetilde{T}_k\| > \|\widetilde{T}_k\|_e$, then $\operatorname{Max} W_m(\widetilde{T}) = \{ \langle \widetilde{T}_k x_n, x_n \rangle : ||x_n|| = 1 \text{ and } \}$ $||T_k x_n|| = ||T_k||\}.$

Proof. Since $\|\widetilde{T}_k^*\widetilde{T}_k\| > \|\widetilde{T}_k\|_e^2 = \|\widetilde{T}_k^*\widetilde{T}_k\|_e$, there exists a finite rank projection P commuting with $\widetilde{T}_k^*\widetilde{T}_k$ such that $\|\widetilde{T}_k^*\widetilde{T}_k(I-P)\| < \|\widetilde{T}_k^*\widetilde{T}_k\|$, where I denotes the identity operator. Then $\|T_k(I-P)\| < \|T_k\|$.

We require the following result to complete this proof.

Lemma 1. Let P be a compact finite rank projection commuting with $\widetilde{T}_k^* \widetilde{T}_k$ such that $\|\widetilde{T}_k^* \widetilde{T}_k (I-P)\| < \|\widetilde{T}_k^* \widetilde{T}_k\|$. Then $MaxW_m(\widetilde{T}) = MaxW_m(\widetilde{T}P).$

Proof.. We first show that $\operatorname{Max} W_m(\widetilde{T}P) \subseteq \operatorname{Max} W_m(\widetilde{T})$. Let $P \in B(X)$ be an infinite dimensional projection such that $PT_k^*T_kP \in \mathcal{K}(X)$. There is thus an orthonormal sequence $\{x_n\} \in X$ such that $Px_n = x_n \forall n$. Let $K = (K_1, ..., K_m) \in \mathcal{K}(X)$. For any $K_j : j \in [1, m]$, $PT_k^*T_kP = K_j + r_kP$ and thus $\langle (P\widetilde{T}_k^*\widetilde{T}_kP - r_kP)x_n, x_n \rangle = \langle K_jx_n, x_n \rangle$ implying $\langle \widetilde{T}_k^*\widetilde{T}_kx_n,x_n \rangle = r_k + \langle K_jx_n,x_n \rangle$. From the orthonormality of sequence $\{x_n\}$, we get $K_j x_n$ converging weakly to 0 in norm as $n \to \infty$, $j \in [1, m]$. Therefore, $\langle T_k^*T_kx_n, x_n \rangle \longrightarrow r_k \text{ as } n \to \infty \text{ implying } r_k \in \operatorname{Max} W_m(T).$ To complete the proof, it is sufficient to prove that $\operatorname{Max} W_m(T) \subseteq \operatorname{Max} W_m(TP)$. Let $r_k \in \operatorname{Max} W_m(T)$. This implies that there is a sequence $\{x_n\}$ of unit vectors such that $\|\widetilde{T}_k x_n\| \to \|\widetilde{T}_k\|$ and $\langle T_k x_n, x_n \rangle \to r_k \; ; \; 1 \leq k \leq m \}.$ Notice that $||T_kP|| = ||T_k||$. Using

$$\begin{aligned} \|\tilde{T}_k\|^2 &\geq \|\tilde{T}_k^*\tilde{T}_kx_n\| \geq \langle \tilde{T}_k^*\tilde{T}_kx_n, x_n \rangle \\ &= \|\tilde{T}_kx_n\|^2 \rightarrow \|\tilde{T}_k\|^2 \end{aligned}$$

r.

we obtain $\|\widetilde{T}_k^*\widetilde{T}_kx_n \to \|\widetilde{T}_k\|^2$. Let $x_n = \alpha_n y_n + \beta_n z_n$ with $\|y_n\| = 1 = \|z_n\|, |\alpha_n|^2 + |\beta_n|^2 = 1, Py_n = y_n$ and $Pz_n = 0$. Since $\widetilde{T}_k^*\widetilde{T}_k$ commutes with P we have,

$$\begin{split} \|\widetilde{T}_{k}\|^{2} &\geq \|\alpha_{n}\|^{2} \|(\widetilde{T}_{k}^{*}\widetilde{T}_{k})^{1/2}y_{n}\|^{2} + |\beta_{n}|^{2} \|(\widetilde{T}_{k}^{*}\widetilde{T}_{k})^{1/2}z_{n}\|^{2} \\ &= \|(\widetilde{T}_{k}^{*}\widetilde{T}_{k})^{1/2}(\alpha_{n}y_{n}) + (\widetilde{T}_{k}^{*}\widetilde{T}_{k})^{1/2}(\beta_{n}z_{n})\|^{2} \\ &= \|(\widetilde{T}_{k}^{*}\widetilde{T}_{k})^{1/2}x_{n}\|^{2} = \|\widetilde{T}_{k}x_{n}\|^{2} \to \|\widetilde{T}_{k}\|^{2}. \end{split}$$

And

$$\begin{aligned} \|(\widetilde{T}_k^*\widetilde{T}_k)^{1/2}z_n\|^2 &= \|\widetilde{T}_kz_n\|^2 = \|\widetilde{T}_k(I-P)z_n\|^2 \\ &\leq \|\widetilde{T}_k(I-P)\|^2 \\ &< \|\widetilde{T}_k\|^2 \text{ implying that } \lim \beta_n = 0. \end{aligned}$$

Therefore, $\|\widetilde{T}_k y_n\| \to \|\widetilde{T}_k\|$ and $\langle \widetilde{T}_k y_n, y_n \rangle \to r_k$. Thus $r_k \in \operatorname{Max} W_m(\widetilde{T}P)$.

ACKNOWLEDGMENT

I thank all friends, family members and colleagues for valuable comments and all support related to the material in this paper.

REFERENCES

- [1] A. Aluthge, On p-hyponormal operators for 0 . Integral Equations and Operator Theory,**13**(1990), 307-315.
- [2] O. S. Cyprian, A note on the joint essential numerical range of Aluthge transform, *Int. J. of Pure and Applied Math* **118(3)** (2018), 573-579, doi: 10.12732/ijpam.v118i3.7
- [3] O. S. Cyprian, S. Aywa, L. Chikamai, Some properties of the joint numerical range of the Aluthge transform, *Int. J. of Pure and Applied Math* **118(2)** (2018), 165-172, **doi:** 10.12732/ijpam.v118i2.3
- [4] G. Ji, N. Liu, Z.Li, Essential numerical range and maximal numerical range of the Aluthge transform, *Linear and Multilinear Algebra*, 55 (2007), 315-322.
- [5] J. G. Stampfli, The norm of derivation, *Pac. J. Math.*, **33** (1970), 737-747.